Merge branch 'master' of https://github.com/danielwilczak101/EasyGA
This commit is contained in:
@ -19,7 +19,7 @@ class Fitness_Examples:
|
||||
"""Test of the GA's ability to improve fitness when the value is index-dependent"""
|
||||
"""If a gene is equal to its index in the chromosome + 1, fitness is incremented"""
|
||||
fitness = 0
|
||||
for i in range(len(chromosome.gene_list)):
|
||||
for i in range(chromosome.size()):
|
||||
if (chromosome.gene_list[i].value == i+1):
|
||||
fitness += 1
|
||||
|
||||
|
||||
@ -9,6 +9,10 @@ class Chromosome:
|
||||
# If the chromosome has been selected then the flag would switch to true
|
||||
self.selected = False
|
||||
|
||||
def size(self):
|
||||
"""Returns the number of genes in the chromosome"""
|
||||
return len(self.gene_list)
|
||||
|
||||
def add_gene(self, gene, index = -1):
|
||||
"""Add a gene to the chromosome at the specified index, defaulted to end of the chromosome"""
|
||||
if index == -1:
|
||||
|
||||
@ -12,14 +12,14 @@ class Parent_Selection:
|
||||
The total number of parents selected is determined by parent_ratio, an attribute to the GA object.
|
||||
"""
|
||||
|
||||
tournament_size = int(len(ga.population.get_all_chromosomes())*ga.tournament_size_ratio)
|
||||
tournament_size = int(ga.population.size()*ga.tournament_size_ratio)
|
||||
if tournament_size < 5:
|
||||
tournament_size = 5
|
||||
# Probability used for determining if a chromosome should enter the mating pool.
|
||||
selection_probability = ga.selection_probability
|
||||
|
||||
# Repeat tournaments until the mating pool is large enough.
|
||||
while (len(ga.population.mating_pool) < len(ga.population.get_all_chromosomes())*ga.parent_ratio):
|
||||
while (len(ga.population.mating_pool) < ga.population.size()*ga.parent_ratio):
|
||||
# Generate a random tournament group and sort by fitness.
|
||||
tournament_group = ga.sort_by_best_fitness([random.choice(ga.population.get_all_chromosomes()) for n in range(tournament_size)])
|
||||
|
||||
@ -41,7 +41,7 @@ class Parent_Selection:
|
||||
Where the chromosomes are the numbers to be selected and the board size for
|
||||
those numbers are directly proportional to the chromosome's current fitness. Where
|
||||
the ball falls is a randomly generated number between 0 and 1"""
|
||||
total_fitness = sum(ga.population.chromosome_list[i].get_fitness() for i in range(len(ga.population.chromosome_list)))
|
||||
total_fitness = sum(ga.population.chromosome_list[i].get_fitness() for i in range(ga.population.size()))
|
||||
rel_fitnesses = []
|
||||
|
||||
for chromosome in ga.population.chromosome_list:
|
||||
@ -50,7 +50,7 @@ class Parent_Selection:
|
||||
|
||||
probability = [sum(rel_fitnesses[:i+1]) for i in range(len(rel_fitnesses))]
|
||||
|
||||
while (len(ga.population.mating_pool) < len(ga.population.get_all_chromosomes())*ga.parent_ratio):
|
||||
while (len(ga.population.mating_pool) < ga.population.size()*ga.parent_ratio):
|
||||
rand_number = random.random()
|
||||
|
||||
# Loop through the list of probabilities
|
||||
|
||||
@ -3,19 +3,15 @@ class Termination_Methods:
|
||||
|
||||
def fitness_based(ga):
|
||||
"""Fitness based approach to terminate when the goal fitness has been reached"""
|
||||
|
||||
status = True
|
||||
|
||||
if ga.population == None:
|
||||
return status
|
||||
for i in range(len(ga.population.get_all_chromosomes())):
|
||||
return True
|
||||
for i in range(ga.population.size()):
|
||||
if(ga.population.get_all_chromosomes()[i].fitness >= ga.fitness_goal):
|
||||
status = False
|
||||
break
|
||||
return status
|
||||
return False
|
||||
return True
|
||||
|
||||
def generation_based(ga):
|
||||
"""Generation based approach to terminate when the goal generation has been reached"""
|
||||
status = True
|
||||
if(ga.current_generation > ga.generation_goal):
|
||||
status = False
|
||||
return status
|
||||
|
||||
return ga.current_generation < ga.generation_goal
|
||||
|
||||
Reference in New Issue
Block a user