Structure change to make it easier for users to clone and use the repository.
This commit is contained in:
337
EasyGA.py
Normal file
337
EasyGA.py
Normal file
@ -0,0 +1,337 @@
|
||||
# Import math for square root (ga.dist()) and ceil (crossover methods)
|
||||
import math
|
||||
|
||||
# Import random for many methods
|
||||
import random
|
||||
|
||||
# Import all decorators
|
||||
import decorators
|
||||
|
||||
# Import all the data structure prebuilt modules
|
||||
from structure import Population as make_population
|
||||
from structure import Chromosome as make_chromosome
|
||||
from structure import Gene as make_gene
|
||||
|
||||
# Misc. Methods
|
||||
from examples import Fitness_Examples
|
||||
from termination import Termination
|
||||
|
||||
# Parent/Survivor Selection Methods
|
||||
from parent import Parent
|
||||
from survivor import Survivor
|
||||
|
||||
# Genetic Operator Methods
|
||||
from crossover import Crossover
|
||||
from mutation import Mutation
|
||||
|
||||
# Default Attributes for the GA
|
||||
from attributes import Attributes
|
||||
|
||||
# Database class
|
||||
from database import sql_database
|
||||
from sqlite3 import Error
|
||||
|
||||
# Graphing package
|
||||
from database import matplotlib_graph
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
class GA(Attributes):
|
||||
"""GA is the main class in EasyGA. Everything is run through the ga
|
||||
class. The GA class inherites all the default ga attributes from the
|
||||
attributes class.
|
||||
|
||||
An extensive wiki going over all major functions can be found at
|
||||
https://github.com/danielwilczak101/EasyGA/wiki
|
||||
"""
|
||||
|
||||
|
||||
def evolve(self, number_of_generations = float('inf'), consider_termination = True):
|
||||
"""Evolves the ga the specified number of generations
|
||||
or until the ga is no longer active if consider_termination is True."""
|
||||
|
||||
# Create the initial population if necessary.
|
||||
if self.population is None:
|
||||
self.initialize_population()
|
||||
|
||||
cond1 = lambda: number_of_generations > 0 # Evolve the specified number of generations.
|
||||
cond2 = lambda: not consider_termination # If consider_termination flag is set:
|
||||
cond3 = lambda: cond2() or self.active() # check termination conditions.
|
||||
|
||||
while cond1() and cond3():
|
||||
|
||||
# If its the first generation, setup the database.
|
||||
if self.current_generation == 0:
|
||||
|
||||
# Create the database here to allow the user to change the
|
||||
# database name and structure before running the function.
|
||||
self.database.create_all_tables(self)
|
||||
|
||||
# Add the current configuration to the config table
|
||||
self.database.insert_config(self)
|
||||
|
||||
# Otherwise evolve the population.
|
||||
else:
|
||||
self.parent_selection_impl()
|
||||
self.crossover_population_impl()
|
||||
self.survivor_selection_impl()
|
||||
self.update_population()
|
||||
self.sort_by_best_fitness()
|
||||
self.mutation_population_impl()
|
||||
|
||||
# Update and sort fitnesses
|
||||
self.set_all_fitness()
|
||||
self.sort_by_best_fitness()
|
||||
|
||||
# Save the population to the database
|
||||
self.save_population()
|
||||
|
||||
# Adapt the ga if the generation times the adapt rate
|
||||
# passes through an integer value.
|
||||
adapt_counter = self.adapt_rate*self.current_generation
|
||||
if int(adapt_counter) < int(adapt_counter + self.adapt_rate):
|
||||
self.adapt()
|
||||
|
||||
number_of_generations -= 1
|
||||
self.current_generation += 1
|
||||
|
||||
|
||||
def update_population(self):
|
||||
"""Updates the population to the new population and resets
|
||||
the mating pool and new population."""
|
||||
|
||||
self.population.update()
|
||||
|
||||
|
||||
def reset_run(self):
|
||||
"""Resets a run by re-initializing the population
|
||||
and modifying counters."""
|
||||
|
||||
self.initialize_population()
|
||||
self.current_generation = 0
|
||||
self.run += 1
|
||||
|
||||
|
||||
def active(self):
|
||||
"""Returns if the ga should terminate based on the
|
||||
termination implimented."""
|
||||
|
||||
return self.termination_impl()
|
||||
|
||||
|
||||
def adapt(self):
|
||||
"""Adapts the ga to hopefully get better results."""
|
||||
|
||||
self.adapt_probabilities()
|
||||
self.adapt_population()
|
||||
|
||||
# Update and sort fitnesses
|
||||
self.set_all_fitness()
|
||||
self.sort_by_best_fitness()
|
||||
|
||||
|
||||
def adapt_probabilities(self):
|
||||
"""Modifies the parent ratio and mutation rates
|
||||
based on the adapt rate and percent converged.
|
||||
Attempts to balance out so that a portion of the
|
||||
population gradually approaches the solution.
|
||||
"""
|
||||
|
||||
# Determines how much to adapt by
|
||||
weight = self.adapt_probability_rate
|
||||
|
||||
# Don't adapt
|
||||
if weight is None or weight <= 0:
|
||||
return
|
||||
|
||||
# Amount of the population desired to converge (default 50%)
|
||||
amount_converged = round(self.percent_converged * len(self.population))
|
||||
|
||||
# Difference between best and i-th chromosomes
|
||||
best_chromosome = self.population[0]
|
||||
tol = lambda i: self.dist(best_chromosome, self.population[i])
|
||||
|
||||
# Too few converged: cross more and mutate less
|
||||
if tol(amount_converged//2) > tol(amount_converged//4)*2:
|
||||
bounds = (self.max_selection_probability,
|
||||
self.min_chromosome_mutation_rate,
|
||||
self.min_gene_mutation_rate)
|
||||
|
||||
# Too many converged: cross less and mutate more
|
||||
else:
|
||||
bounds = (self.min_selection_probability,
|
||||
self.max_chromosome_mutation_rate,
|
||||
self.max_gene_mutation_rate)
|
||||
|
||||
# Weighted average of x and y
|
||||
average = lambda x, y: weight * x + (1-weight) * y
|
||||
|
||||
# Adjust rates towards the bounds
|
||||
self.selection_probability = average(bounds[0], self.selection_probability)
|
||||
self.chromosome_mutation_rate = average(bounds[1], self.chromosome_mutation_rate)
|
||||
self.gene_mutation_rate = average(bounds[2], self.gene_mutation_rate)
|
||||
|
||||
|
||||
def adapt_population(self):
|
||||
"""
|
||||
Performs weighted crossover between the best chromosome and
|
||||
the rest of the chromosomes, using negative weights to push
|
||||
away chromosomes that are too similar and small positive
|
||||
weights to pull in chromosomes that are too different.
|
||||
"""
|
||||
|
||||
# Don't adapt the population.
|
||||
if self.adapt_population_flag == False:
|
||||
return
|
||||
|
||||
self.parent_selection_impl()
|
||||
|
||||
# Strongly cross the best chromosome with all other chromosomes
|
||||
for n, parent in enumerate(self.population.mating_pool):
|
||||
|
||||
if self.population[n] != self.population[0]:
|
||||
|
||||
# Strongly cross with the best chromosome
|
||||
# May reject negative weight or division by 0
|
||||
try:
|
||||
self.crossover_individual_impl(
|
||||
self.population[n],
|
||||
parent,
|
||||
weight = -3/4,
|
||||
)
|
||||
|
||||
# If negative weights can't be used or division by 0, use positive weight
|
||||
except ValueError:
|
||||
self.crossover_individual_impl(
|
||||
self.population[n],
|
||||
parent,
|
||||
weight = +1/4,
|
||||
)
|
||||
|
||||
# Stop if we've filled up an entire population
|
||||
if len(self.population.next_population) >= len(self.population):
|
||||
break
|
||||
|
||||
# Replace worst chromosomes with new chromosomes, except for the previous best chromosome
|
||||
min_len = min(len(self.population)-1, len(self.population.next_population))
|
||||
if min_len > 0:
|
||||
self.population[-min_len:] = self.population.next_population[:min_len]
|
||||
self.population.next_population = []
|
||||
self.population.mating_pool = []
|
||||
|
||||
|
||||
def initialize_population(self):
|
||||
"""Initialize the population using
|
||||
the initialization implimentation
|
||||
that is currently set.
|
||||
"""
|
||||
|
||||
if self.chromosome_impl is not None:
|
||||
self.population = self.make_population(
|
||||
self.chromosome_impl()
|
||||
for _
|
||||
in range(self.population_size)
|
||||
)
|
||||
|
||||
elif self.gene_impl is not None:
|
||||
self.population = self.make_population(
|
||||
(
|
||||
self.gene_impl()
|
||||
for __
|
||||
in range(self.chromosome_length)
|
||||
)
|
||||
for _
|
||||
in range(self.population_size)
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError("No chromosome or gene impl specified.")
|
||||
|
||||
|
||||
def set_all_fitness(self):
|
||||
"""Will get and set the fitness of each chromosome in the population.
|
||||
If update_fitness is set then all fitness values are updated.
|
||||
Otherwise only fitness values set to None (i.e. uninitialized
|
||||
fitness values) are updated.
|
||||
"""
|
||||
|
||||
# Check each chromosome
|
||||
for chromosome in self.population:
|
||||
|
||||
# Update fitness if needed or asked by the user
|
||||
if chromosome.fitness is None or self.update_fitness:
|
||||
chromosome.fitness = self.fitness_function_impl(chromosome)
|
||||
|
||||
|
||||
def sort_by_best_fitness(self, chromosome_list = None, in_place = True):
|
||||
"""Sorts the chromosome list by fitness based on fitness type.
|
||||
1st element has best fitness.
|
||||
2nd element has second best fitness.
|
||||
etc.
|
||||
"""
|
||||
|
||||
if self.target_fitness_type not in ('max', 'min'):
|
||||
raise ValueError("Unknown target fitness type")
|
||||
|
||||
# Sort the population if no chromosome list is given
|
||||
if chromosome_list is None:
|
||||
chromosome_list = self.population
|
||||
|
||||
# Reversed sort if max fitness should be first
|
||||
reverse = (self.target_fitness_type == 'max')
|
||||
|
||||
# Sort by fitness, assuming None should be moved to the end of the list
|
||||
key = lambda chromosome: (chromosome.fitness if (chromosome.fitness is not None) else (float('inf') * (+1, -1)[int(reverse)]))
|
||||
|
||||
if in_place:
|
||||
chromosome_list.sort(key = key, reverse = reverse)
|
||||
return chromosome_list
|
||||
|
||||
else:
|
||||
return sorted(chromosome_list, key = key, reverse = reverse)
|
||||
|
||||
|
||||
def get_chromosome_fitness(self, index):
|
||||
"""Returns the fitness value of the chromosome
|
||||
at the specified index after conversion based
|
||||
on the target fitness type.
|
||||
"""
|
||||
|
||||
return self.convert_fitness(self.population[index].fitness)
|
||||
|
||||
|
||||
def convert_fitness(self, fitness_value):
|
||||
"""Returns the fitness value if the type of problem
|
||||
is a maximization problem. Otherwise the fitness is
|
||||
inverted using max - value + min.
|
||||
"""
|
||||
|
||||
# No conversion needed
|
||||
if self.target_fitness_type == 'max': return fitness_value
|
||||
|
||||
max_fitness = self.population[-1].fitness
|
||||
min_fitness = self.population[0].fitness
|
||||
|
||||
return max_fitness - fitness_value + min_fitness
|
||||
|
||||
|
||||
def print_generation(self):
|
||||
"""Prints the current generation"""
|
||||
print(f"Current Generation \t: {self.current_generation}")
|
||||
|
||||
|
||||
def print_population(self):
|
||||
"""Prints the entire population"""
|
||||
print(self.population)
|
||||
|
||||
|
||||
def print_best_chromosome(self):
|
||||
"""Prints the best chromosome and its fitness"""
|
||||
print(f"Best Chromosome \t: {self.population[0]}")
|
||||
print(f"Best Fitness \t: {self.population[0].fitness}")
|
||||
|
||||
|
||||
def print_worst_chromosome(self):
|
||||
"""Prints the worst chromosome and its fitness"""
|
||||
print(f"Worst Chromosome \t: {self.population[-1]}")
|
||||
print(f"Worst Fitness \t: {self.population[-1].fitness}")
|
||||
Reference in New Issue
Block a user