Structure change to make it easier for users to clone and use the repository.
This commit is contained in:
225
test_EasyGA.py
Normal file
225
test_EasyGA.py
Normal file
@ -0,0 +1,225 @@
|
||||
import random
|
||||
import EasyGA
|
||||
|
||||
# USE THIS COMMAND WHEN TESTING -
|
||||
# python3 -m pytest
|
||||
|
||||
# Tests can be broken down into three parts.
|
||||
# - Testing correct size
|
||||
# - Testing size while integrated with our function
|
||||
# - Testing correct value
|
||||
# - Testing integration with other functions
|
||||
|
||||
def test_population_size():
|
||||
"""Test the population size is create correctly"""
|
||||
|
||||
for i in range(1,100):
|
||||
# Create the ga to test
|
||||
ga = EasyGA.GA()
|
||||
# Set the upper limit of testing
|
||||
ga.population_size = i
|
||||
# Evolve the ga
|
||||
ga.evolve()
|
||||
|
||||
# If they are not equal throw an error
|
||||
assert ga.population.size() == ga.population_size
|
||||
|
||||
def test_chromosome_length():
|
||||
""" Test to see if the actual chromosome length is the same as defined."""
|
||||
|
||||
# Test from 0 to 100 chromosome length
|
||||
for i in range(1,100):
|
||||
# Create the ga to test
|
||||
ga = EasyGA.GA()
|
||||
# Set the upper limit of testing
|
||||
ga.chromosome_length = i
|
||||
# Evolve the ga
|
||||
ga.evolve()
|
||||
|
||||
# If they are not equal throw an error
|
||||
assert ga.population.chromosome_list[0].size() == ga.chromosome_length
|
||||
|
||||
def test_gene_value():
|
||||
""" """
|
||||
pass
|
||||
|
||||
def test_initilization():
|
||||
""" """
|
||||
pass
|
||||
|
||||
def test_default():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
# Print your default genetic algorithm
|
||||
ga.print_generation()
|
||||
ga.print_population()
|
||||
|
||||
|
||||
def test_attributes_gene_impl():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set necessary attributes
|
||||
ga.population_size = 3
|
||||
ga.chromosome_length = 5
|
||||
ga.generation_goal = 1
|
||||
# Set gene_impl
|
||||
ga.gene_impl = lambda: random.randint(1, 10)
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
|
||||
def test_attributes_chromosome_impl_lambdas():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set necessary attributes
|
||||
ga.chromosome_length = 3
|
||||
ga.generation_goal = 1
|
||||
# Set gene_impl to None so it won't interfere
|
||||
ga.gene_impl = None
|
||||
# Set chromosome_impl
|
||||
ga.chromosome_impl = lambda: [
|
||||
random.randrange(1,100),
|
||||
random.uniform(10,5),
|
||||
random.choice(["up","down"])
|
||||
]
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
def test_attributes_chromosome_impl_functions():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set necessary attributes
|
||||
ga.chromosome_length = 3
|
||||
ga.generation_goal = 1
|
||||
|
||||
# Create chromosome_impl user function
|
||||
def user_chromosome_function():
|
||||
chromosome_data = [
|
||||
random.randrange(1,100),
|
||||
random.uniform(10,5),
|
||||
random.choice(["up","down"])
|
||||
]
|
||||
return chromosome_data
|
||||
|
||||
# Set the chromosome_impl
|
||||
ga.chromosome_impl = user_chromosome_function
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
def test_while_ga_active():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set necessary attributes
|
||||
ga.generation_goal = 1
|
||||
|
||||
# Evolve using ga.active
|
||||
while ga.active():
|
||||
ga.evolve_generation(5)
|
||||
|
||||
|
||||
def test_initilization_impl():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set the initialization_impl
|
||||
ga.initialization_impl = EasyGA.Initialization_Methods.random_initialization
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
assert (ga.initialization_impl == EasyGA.Initialization_Methods.random_initialization) and (ga != None)
|
||||
|
||||
def test_parent_selection_impl():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set the parent_selection_impl
|
||||
ga.parent_selection_impl = EasyGA.Parent_Selection.Fitness.roulette
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
assert (ga.parent_selection_impl == EasyGA.Parent_Selection.Fitness.roulette) and (ga != None)
|
||||
|
||||
def test_crossover_population_impl():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set the crossover_population_impl
|
||||
ga.crossover_population_impl = EasyGA.Crossover_Methods.Population.sequential_selection
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
assert (ga.crossover_population_impl == EasyGA.Crossover_Methods.Population.sequential_selection) and (ga != None)
|
||||
|
||||
def test_crossover_individual_impl():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set the crossover_individual_impl
|
||||
ga.crossover_individual_impl = EasyGA.Crossover_Methods.Individual.single_point
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
assert (ga.crossover_individual_impl == EasyGA.Crossover_Methods.Individual.single_point) and (ga != None)
|
||||
|
||||
def test_mutation_population_impl():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set the mutation_population_impl
|
||||
ga.mutation_population_impl = EasyGA.Mutation_Methods.Population.random_selection
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
assert (ga.mutation_population_impl == EasyGA.Mutation_Methods.Population.random_selection) and (ga != None)
|
||||
|
||||
def test_mutation_individual_impl():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set the mutation_population_impl
|
||||
ga.mutation_individual_impl = EasyGA.Mutation_Methods.Individual.single_gene
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
assert (ga.mutation_individual_impl == EasyGA.Mutation_Methods.Individual.single_gene) and (ga != None)
|
||||
|
||||
def test_survivor_selection_impl():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set the survivor_selection_impl
|
||||
ga.survivor_selection_impl = EasyGA.Survivor_Selection.fill_in_random
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
assert (ga.survivor_selection_impl == EasyGA.Survivor_Selection.fill_in_random) and (ga != None)
|
||||
|
||||
def test_termination_impl():
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Set the termination_impl
|
||||
ga.termination_impl = EasyGA.Termination_Methods.fitness_and_generation_based
|
||||
|
||||
# Evolve the genetic algorithm
|
||||
ga.evolve()
|
||||
|
||||
assert (ga.termination_impl == EasyGA.Termination_Methods.fitness_and_generation_based) and (ga != None)
|
||||
Reference in New Issue
Block a user