Make sure at least 2 parents are selected
This commit is contained in:
@ -42,19 +42,34 @@ def ensure_sorted(selection_method):
|
||||
return new_method
|
||||
|
||||
|
||||
def compute_parent_amount(selection_method):
|
||||
"""Computes the amount of parents
|
||||
needed to be selected, and passes it
|
||||
as another argument for the method.
|
||||
"""
|
||||
|
||||
def new_method(ga):
|
||||
parent_amount = max(2, len(ga.population)*ga.parent_ratio)
|
||||
ga.parent_selection_impl(ga, parent_amount)
|
||||
|
||||
return new_method
|
||||
|
||||
|
||||
class Parent_Selection:
|
||||
|
||||
# Private method decorators, see above.
|
||||
_check_selection_probability = check_selection_probability
|
||||
_check_positive_fitness = check_positive_fitness
|
||||
_ensure_sorted = ensure_sorted
|
||||
_compute_parent_amount = compute_parent_amount
|
||||
|
||||
|
||||
class Rank:
|
||||
|
||||
@check_selection_probability
|
||||
@ensure_sorted
|
||||
def tournament(ga):
|
||||
@compute_parent_amount
|
||||
def tournament(ga, parent_amount):
|
||||
"""
|
||||
Will make tournaments of size tournament_size and choose the winner (best fitness)
|
||||
from the tournament and use it as a parent for the next generation. The total number
|
||||
@ -88,7 +103,7 @@ class Parent_Selection:
|
||||
ga.population.set_parent(tournament_group[index])
|
||||
|
||||
# Stop tournament selection if enough parents are selected
|
||||
if len(ga.population.mating_pool) >= len(ga.population)*ga.parent_ratio:
|
||||
if len(ga.population.mating_pool) >= parent_amount:
|
||||
return
|
||||
|
||||
|
||||
@ -97,7 +112,8 @@ class Parent_Selection:
|
||||
@check_selection_probability
|
||||
@ensure_sorted
|
||||
@check_positive_fitness
|
||||
def roulette(ga):
|
||||
@compute_parent_amount
|
||||
def roulette(ga, parent_amount):
|
||||
"""Roulette selection works based off of how strong the fitness is of the
|
||||
chromosomes in the population. The stronger the fitness the higher the probability
|
||||
that it will be selected. Using the example of a casino roulette wheel.
|
||||
@ -123,7 +139,7 @@ class Parent_Selection:
|
||||
probability = probability[1:]
|
||||
|
||||
# Loops until it reaches a desired mating pool size
|
||||
while (len(ga.population.mating_pool) < len(ga.population)*ga.parent_ratio):
|
||||
while len(ga.population.mating_pool) < parent_amount:
|
||||
|
||||
# Spin the roulette
|
||||
rand_number = random.random()
|
||||
@ -138,17 +154,19 @@ class Parent_Selection:
|
||||
@check_selection_probability
|
||||
@ensure_sorted
|
||||
@check_positive_fitness
|
||||
def stochastic(ga):
|
||||
@compute_parent_amount
|
||||
def stochastic(ga, parent_amount):
|
||||
"""Stochastic roulette selection works based off of how strong the fitness is of the
|
||||
chromosomes in the population. The stronger the fitness the higher the probability
|
||||
that it will be selected. Instead of dividing the fitness by the sum of all fitnesses
|
||||
and incrementally increasing the chance something is selected, the stochastic method
|
||||
just divides by the highest fitness and selects randomly."""
|
||||
just divides by the highest fitness and selects randomly.
|
||||
"""
|
||||
|
||||
max_fitness = ga.get_chromosome_fitness(0)
|
||||
|
||||
# Loops until it reaches a desired mating pool size
|
||||
while (len(ga.population.mating_pool) < len(ga.population)*ga.parent_ratio):
|
||||
while len(ga.population.mating_pool) < parent_amount:
|
||||
|
||||
# Selected chromosome
|
||||
index = random.randrange(len(ga.population))
|
||||
|
||||
Reference in New Issue
Block a user