Added blank lines and fixed run_testing

This commit is contained in:
SimpleArt
2020-10-12 19:57:57 -04:00
parent 4770473825
commit 3424fd4da7
9 changed files with 86 additions and 18 deletions

View File

@ -1,20 +1,25 @@
import random
# Import all the data structure prebuilt modules
from initialization import Population as create_population
from initialization import Chromosome as create_chromosome
from initialization import Gene as create_gene
# Structure Methods
from fitness_function import Fitness_Examples
from initialization import Initialization_Methods
from termination_point import Termination_Methods
# Population Methods
from survivor_selection import Survivor_Selection
from parent_selection import Parent_Selection
# Manipulation Methods
from mutation import Mutation_Methods
from crossover import Crossover_Methods
class GA:
def __init__(self):
"""Initialize the GA."""
# Initilization variables
@ -44,12 +49,15 @@ class GA:
# Default EasyGA implimentation structure
self.initialization_impl = Initialization_Methods.random_initialization
self.fitness_function_impl = Fitness_Examples.index_dependent_values
# Selects which chromosomes should be automaticly moved to the next population
self.survivor_selection_impl = Survivor_Selection.fill_in_best
# Methods for accomplishing parent-selection -> Crossover -> Mutation
self.parent_selection_impl = Parent_Selection.Tournament.with_replacement
self.crossover_impl = Crossover_Methods.single_point_crossover
self.mutation_impl = Mutation_Methods.per_gene_mutation
# The type of termination to impliment
self.termination_impl = Termination_Methods.generation_based
@ -76,22 +84,26 @@ class GA:
self.current_generation += 1
def evolve(self):
"""Runs the ga until the termination point has been satisfied."""
# While the termination point hasnt been reached keep running
while(self.active()):
self.evolve_generation()
def active(self):
"""Returns if the ga should terminate base on the termination implimented"""
# Send termination_impl the whole ga class
return self.termination_impl(self)
def initialize_population(self):
"""Initialize the population using the initialization
implimentation that is currently set"""
self.population = self.initialization_impl(self)
def set_all_fitness(self,chromosome_set):
"""Will get and set the fitness of each chromosome in the population.
If update_fitness is set then all fitness values are updated.
@ -104,6 +116,7 @@ class GA:
# Set the chromosomes fitness using the fitness function
chromosome.set_fitness(self.fitness_function_impl(chromosome))
def sort_by_best_fitness(self, chromosome_set):
chromosome_set_temp = chromosome_set
@ -120,14 +133,17 @@ class GA:
return chromosome_set
def make_gene(self,value):
"""Let's the user create a gene."""
return create_gene(value)
def make_chromosome(self):
"""Let's the user create a chromosome."""
return create_chromosome()
def make_population(self):
"""Let's the user create a population."""
return create_population()

View File

@ -1,5 +1,6 @@
class Fitness_Examples:
"""Fitness function examples used"""
def is_it_5(chromosome):
"""A very simple case test function - If the chromosomes gene value is a 5 add one
to the chromosomes overall fitness value."""
@ -15,6 +16,7 @@ class Fitness_Examples:
return fitness
def index_dependent_values(chromosome):
"""Test of the GA's ability to improve fitness when the value is index-dependent"""
"""If a gene is equal to its index in the chromosome + 1, fitness is incremented"""

View File

@ -1,4 +1,5 @@
class Chromosome:
def __init__(self, gene_list = None):
if gene_list is None:
self.gene_list = []
@ -9,36 +10,45 @@ class Chromosome:
# If the chromosome has been selected then the flag would switch to true
self.selected = False
def size(self):
"""Returns the number of genes in the chromosome"""
return len(self.gene_list)
def add_gene(self, gene, index = -1):
"""Add a gene to the chromosome at the specified index, defaulted to end of the chromosome"""
if index == -1:
index = len(self.gene_list)
self.gene_list.insert(index, gene)
def remove_gene(self, index):
del self.gene_list[index]
def get_genes(self):
return self.gene_list
def get_fitness(self):
"""Return the fitness of the chromosome"""
return self.fitness
def set_gene(self, gene, index):
self.gene_list[index] = gene
def set_genes(self, genes):
self.gene_list = genes
def set_fitness(self, fitness):
"""Set the fitness value of the chromosome"""
self.fitness = fitness
def __repr__(self):
"""Format the repr() output for the chromosome"""
output_str = ''

View File

@ -3,6 +3,7 @@ def check_gene(value):
assert value != "" , "Gene can not be empty"
return value
class Gene:
def __init__(self, value):
@ -10,22 +11,27 @@ class Gene:
self.fitness = None
self.value = check_gene(value)
def get_fitness(self):
"""Return fitness of the gene"""
return self.fitness
def get_value(self):
"""Return value of the gene"""
return self.value
def set_fitness(self, fitness):
"""Set fitness of the gene"""
self.fitness = fitness
def set_value(self, value):
"""Set value of the gene"""
self.value = value
def __repr__(self):
"""Format the repr() output value"""
return f'[{self.value}]'

View File

@ -28,5 +28,6 @@ class Initialization_Methods:
else:
#Exit because either were not specified
print("You did not specify any initialization constraints.")
break
population.add_chromosome(chromosome)
return population

View File

@ -1,60 +1,79 @@
class Population:
def __init__(self, chromosome_list = None):
"""Intiialize the population with fitness of value None, and a set of chromosomes dependant on user-passed parameter"""
if chromosome_list is None:
self.chromosome_list = []
else:
self.chromosome_list = chromosome_list
self.fitness = None
self.mating_pool = []
def size(self):
"""Returns the size of the population"""
return len(self.chromosome_list)
def get_closet_fitness(self,value):
"""Get the chomosome that has the closets fitness to the value defined"""
pass
def add_chromosome(self, chromosome, index = -1):
"""Adds a chromosome to the population at the input index, defaulted to the end of the chromosome set"""
if index == -1:
index = len(self.chromosome_list)
self.chromosome_list.insert(index, chromosome)
def remove_chromosome(self, index):
"""removes a chromosome from the indicated index"""
del self.chromosome_list[index]
def get_all_chromosomes(self):
"""returns all chromosomes in the population"""
return self.chromosome_list
def get_fitness(self):
"""returns the population's fitness"""
return self.fitness
def set_all_chromosomes(self, chromosomes):
self.chromosome_list = chromosomes
def set_chromosome(self, chromosome, index = -1):
if index == -1:
index = len(self.chromosomes)-1
self.chromosome_list[index] = chromosome
def set_fitness(self, fitness):
"""Sets the fitness value of the population"""
self.fitness = fitness
def __repr__(self):
for index in range(len(self.chromosomes)):
return f'{self.chromosome_list[index]}'
"""Returns a string representation of the entire population"""
pass
def print_all(self):
"""Prints information about the population in the following format:"""
"""Ex .Current population"""
"""Chromosome 1 - [gene][gene][gene][.etc] / Chromosome fitness - """
"""Prints information about the population in the following format:
Current population
Chromosome 1 - [gene][gene][gene][.etc] / Chromosome fitness -
Chromosome 2 - [gene][gene][gene][.etc] / Chromosome fitness -
etc.
"""
print("Current population:")
for index in range(len(self.chromosome_list)):
for index in range(self.size()):
print(f'Chromosome - {index} {self.chromosome_list[index]}', end = "")
print(f' / Fitness = {self.chromosome_list[index].fitness}')
print(f' / Fitness = {self.chromosome_list[index].get_fitness()}')

View File

@ -5,7 +5,9 @@ from initialization.population_structure.population import Population
from initialization.chromosome_structure.chromosome import Chromosome
class Parent_Selection:
class Tournament:
def with_replacement(ga):
"""
Will make tournaments of size tournament_size and choose the winner (best fitness) from the tournament and use it as a parent for the next generation
@ -33,7 +35,9 @@ class Parent_Selection:
if random.uniform(0, 1) < selection_probability * pow(1-selection_probability, index):
ga.population.mating_pool.append(tournament_group[index])
class Roulette:
def roulette_selection(ga):
"""Roulette selection works based off of how strong the fitness is of the
chromosomes in the population. The stronger the fitness the higher the probability
@ -41,6 +45,7 @@ class Parent_Selection:
Where the chromosomes are the numbers to be selected and the board size for
those numbers are directly proportional to the chromosome's current fitness. Where
the ball falls is a randomly generated number between 0 and 1"""
total_fitness = sum(ga.population.chromosome_list[i].get_fitness() for i in range(ga.population.size()))
rel_fitnesses = []

View File

@ -1,5 +1,5 @@
import EasyGA
import random
import EasyGA
# Create the Genetic algorithm
ga = EasyGA.GA()
@ -8,6 +8,7 @@ ga.population_size = 100
ga.chromosome_length = 10
ga.generation_goal = 100
ga.gene_impl = [random.randint,1,10]
ga.parent_selection_impl = EasyGA.Parent_Selection.Roulette.roulette_selection
ga.evolve()

View File

@ -4,13 +4,21 @@ class Termination_Methods:
def fitness_based(ga):
"""Fitness based approach to terminate when the goal fitness has been reached"""
# Need to start the algorithm if the population is None
if ga.population == None:
return True
for i in range(ga.population.size()):
if(ga.population.get_all_chromosomes()[i].fitness >= ga.fitness_goal):
# Check all chromosomes
for chromosome in ga.population.get_all_chromosomes():
# Stop if a chromosome has reached the fitness_goal
if(chromosome.fitness >= ga.fitness_goal):
return False
# Continue if no chromosomes have reached the fitness goal
return True
def generation_based(ga):
"""Generation based approach to terminate when the goal generation has been reached"""