diff --git a/src/EasyGA.py b/src/EasyGA.py index b920c82..912b550 100644 --- a/src/EasyGA.py +++ b/src/EasyGA.py @@ -1,12 +1,10 @@ import random - -# Import all the data prebuilt modules +# Import all the data structure prebuilt modules from initialization import population as create_population from initialization import chromosome as create_chromosome from initialization import gene as create_gene -# -from fitness_function import fitness_examples # Import example classes +from fitness_function import fitness_examples from initialization import initialization_examples from termination_point import termination_examples from selection import selection_examples @@ -24,13 +22,12 @@ class GA: self.population = None # Termination varibles self.current_generation = 0 - self.max_generations = 3 self.current_fitness = 0 - self.goal_fitness = 3 + self.generation_goal = 3 + self.fitness_goal = 3 # Mutation variables self.mutation_rate = 0.03 - # Defualt EastGA implimentation structure self.initialization_impl = initialization_examples.random_initialization self.fitness_funciton_impl = fitness_examples.is_it_5 @@ -39,9 +36,6 @@ class GA: #self.crossover_impl = FastSinglePointCrossover() self.termination_impl = termination_examples.generation_based - # If we want the fitnesses to be updated by the computer - self.update_fitness = True - def initialize_population(self): """Initialize the population using the initialization implimentation that is currently set""" diff --git a/src/termination_point/examples.py b/src/termination_point/examples.py index 81d31f1..823757a 100644 --- a/src/termination_point/examples.py +++ b/src/termination_point/examples.py @@ -4,13 +4,13 @@ class termination_examples: def fitness_based(ga): """Fitness based approach to terminate when the goal fitness has been reached""" status = True - if(ga.current_fitness > ga.goal_fitness): + if(ga.current_fitness > ga.fitness_goal): status = False return status def generation_based(ga): """Generation based approach to terminate when the goal generation has been reached""" status = True - if(ga.current_generation > ga.max_generations): + if(ga.current_generation > ga.generation_goal): status = False return status