Merge branch 'master' into ryley_beta
This commit is contained in:
1
CHANGELOG.rst
Normal file
1
CHANGELOG.rst
Normal file
@ -0,0 +1 @@
|
||||
|
||||
19
MANIFEST.in
19
MANIFEST.in
@ -1,19 +0,0 @@
|
||||
graft docs
|
||||
graft src
|
||||
graft ci
|
||||
graft tests
|
||||
|
||||
include .bumpversion.cfg
|
||||
include .coveragerc
|
||||
include .cookiecutterrc
|
||||
include .editorconfig
|
||||
|
||||
include AUTHORS.rst
|
||||
include CHANGELOG.rst
|
||||
include CONTRIBUTING.rst
|
||||
include LICENSE
|
||||
include README.rst
|
||||
|
||||
include tox.ini .travis.yml .appveyor.yml .readthedocs.yml .pre-commit-config.yaml
|
||||
|
||||
global-exclude *.py[cod] __pycache__/* *.so *.dylib
|
||||
30
README.md
30
README.md
@ -25,37 +25,7 @@ ga.evolve()
|
||||
Put the out here
|
||||
```
|
||||
|
||||
## Customized:
|
||||
```python
|
||||
import random
|
||||
import EasyGA
|
||||
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
# Makes a new gene
|
||||
new_gene = ga.make_gene("HelloWorld")
|
||||
# Makes a chromosome to store genes in
|
||||
new_chromosome = ga.make_chromosome()
|
||||
# Makes a Population to store chromosomes in
|
||||
new_population = ga.make_population()
|
||||
|
||||
ga.initialize()
|
||||
|
||||
print(ga.population)
|
||||
|
||||
for chromosome in ga.population.chromosomes:
|
||||
print(chromosome.genes[0].__dict__)
|
||||
```
|
||||
|
||||
### Output:
|
||||
```python
|
||||
<initialization.population_structure.population.population object at 0x7f993002fdf0>
|
||||
{'fitness': None, 'value': 47}
|
||||
{'fitness': None, 'value': 4}
|
||||
{'fitness': None, 'value': 68}
|
||||
{'fitness': None, 'value': 57}
|
||||
```
|
||||
|
||||
# How Testing works
|
||||
|
||||
|
||||
12
setup.py
12
setup.py
@ -1,17 +1,21 @@
|
||||
from setuptools import setup
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
with open("README.md", "r") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
|
||||
setup(
|
||||
name='EasyGA',
|
||||
version='0.0.8',
|
||||
version='0.0.25',
|
||||
description='A ubiquitous or general purpuse GA',
|
||||
py_modules=["EasyGA"],
|
||||
package_dir={'':'src'},
|
||||
packages=find_packages(where='EasyGA'),
|
||||
package_dir={
|
||||
'': 'EasyGA',
|
||||
},
|
||||
python_requires='>=3.6',
|
||||
url="https://github.com/danielwilczak101/EasyGA",
|
||||
author="Daniel Wilczak",
|
||||
author="Daniel Wilczak, Jack RyanNguyen, Ryley Griffith, Jared Curtis, Matthew Chase Oxamendi",
|
||||
author_email="danielwilczak101@gmail.com",
|
||||
long_description = long_description,
|
||||
long_description_content_type = "text/markdown",
|
||||
|
||||
@ -72,6 +72,7 @@ class GA:
|
||||
self.population.set_all_chromosomes(self.sort_by_best_fitness())
|
||||
|
||||
number_of_generations -= 1
|
||||
|
||||
self.current_generation += 1
|
||||
|
||||
def evolve(self):
|
||||
@ -124,10 +125,13 @@ class GA:
|
||||
return chromosome_set
|
||||
|
||||
def make_gene(self,value):
|
||||
"""Let's the user create a gene."""
|
||||
return create_gene(value)
|
||||
|
||||
def make_chromosome(self):
|
||||
"""Let's the user create a chromosome."""
|
||||
return create_chromosome()
|
||||
|
||||
def make_population(self):
|
||||
"""Let's the user create a population."""
|
||||
return create_population()
|
||||
|
||||
3
src/__init__.py
Normal file
3
src/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
import EasyGA
|
||||
import run_testing
|
||||
import test_EasyGA
|
||||
@ -1 +1 @@
|
||||
# Crossover function
|
||||
# Mutation functions
|
||||
|
||||
3
src/crossover/methods.py
Normal file
3
src/crossover/methods.py
Normal file
@ -0,0 +1,3 @@
|
||||
class Crossover_methods:
|
||||
"""Mutation examples will go here """
|
||||
pass
|
||||
16
src/fitness_function/methods.py
Normal file
16
src/fitness_function/methods.py
Normal file
@ -0,0 +1,16 @@
|
||||
class Fitness_methods:
|
||||
"""Fitness function examples used"""
|
||||
|
||||
def is_it_5(chromosome):
|
||||
"""A very simple case test function - If the chromosomes gene value is a 5 add one
|
||||
to the chromosomes overall fitness value."""
|
||||
# Overall fitness value
|
||||
fitness = 0
|
||||
# For each gene in the chromosome
|
||||
for gene in chromosome.gene_list:
|
||||
# Check if its value = 5
|
||||
if(gene.value == 5):
|
||||
# If its value is 5 then add one to
|
||||
# the overal fitness of the chromosome.
|
||||
fitness += 1
|
||||
return fitness
|
||||
@ -1,12 +0,0 @@
|
||||
class test_fitness_funciton:
|
||||
def get_fitness(self, chromosome):
|
||||
# For every gene in chromosome
|
||||
for i in range(len(chromosome.genes)):
|
||||
# If the gene has a five then add one to the fitness
|
||||
# Example -> Chromosome = [5],[2],[2],[5],[5] then fitness = 3
|
||||
if (chromosome.genes[i].get_value == 5):
|
||||
# Add to the genes fitness
|
||||
chromosome.genes[i].fitness += 1
|
||||
# Add to the chromosomes fitness
|
||||
chromosome.fitness += 1
|
||||
return chromosome.fitness
|
||||
1
src/fitness_function/test_methods.py
Normal file
1
src/fitness_function/test_methods.py
Normal file
@ -0,0 +1 @@
|
||||
|
||||
@ -1,5 +1,3 @@
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .initialization_methods import Initialization_Methods
|
||||
from .population_structure.population import Population
|
||||
from .chromosome_structure.chromosome import Chromosome
|
||||
from .gene_structure.gene import Gene
|
||||
|
||||
|
||||
@ -1,13 +1,16 @@
|
||||
class Chromosome:
|
||||
|
||||
def __init__(self, genes = None):
|
||||
if genes is None:
|
||||
def __init__(self, gene_list = None):
|
||||
if gene_list is None:
|
||||
self.gene_list = []
|
||||
else:
|
||||
self.gene_list = genes
|
||||
|
||||
self.fitness = None
|
||||
# If the chromosome has been selected then the flag would switch to true
|
||||
self.selected = False
|
||||
|
||||
def add_gene(self, gene, index = -1):
|
||||
"""Add a gene to the chromosome at the specified index, defaulted to end of the chromosome"""
|
||||
if index == -1:
|
||||
index = len(self.gene_list)
|
||||
self.gene_list.insert(index, gene)
|
||||
@ -19,6 +22,7 @@ class Chromosome:
|
||||
return self.gene_list
|
||||
|
||||
def get_fitness(self):
|
||||
"""Return the fitness of the chromosome"""
|
||||
return self.fitness
|
||||
|
||||
def set_gene(self, gene, index):
|
||||
@ -28,9 +32,11 @@ class Chromosome:
|
||||
self.gene_list = genes
|
||||
|
||||
def set_fitness(self, fitness):
|
||||
"""Set the fitness value of the chromosome"""
|
||||
self.fitness = fitness
|
||||
|
||||
def __repr__(self):
|
||||
"""Format the repr() output for the chromosome"""
|
||||
output_str = ''
|
||||
for gene in self.gene_list:
|
||||
output_str += gene.__repr__()
|
||||
|
||||
@ -6,16 +6,20 @@ def check_gene(value):
|
||||
class Gene:
|
||||
|
||||
def __init__(self, value):
|
||||
"""Initialize a gene with fitness of value None and the input value"""
|
||||
self.fitness = None
|
||||
self.value = check_gene(value)
|
||||
|
||||
def get_fitness(self):
|
||||
"""Return fitness of the gene"""
|
||||
return self.fitness
|
||||
|
||||
def get_value(self):
|
||||
"""Return value of the gene"""
|
||||
return self.value
|
||||
|
||||
def set_fitness(self, fitness):
|
||||
"""Set fitness of the gene"""
|
||||
self.fitness = fitness
|
||||
|
||||
def set_value(self, value):
|
||||
@ -23,4 +27,5 @@ class Gene:
|
||||
self.value = value
|
||||
|
||||
def __repr__(self):
|
||||
"""Format the repr() output value"""
|
||||
return f'[{self.value}]'
|
||||
|
||||
33
src/initialization/methods.py
Normal file
33
src/initialization/methods.py
Normal file
@ -0,0 +1,33 @@
|
||||
# Import the data structure
|
||||
from .population_structure.population import Population as create_population
|
||||
from .chromosome_structure.chromosome import Chromosome as create_chromosome
|
||||
from .gene_structure.gene import Gene as create_gene
|
||||
|
||||
class Initialization_methods:
|
||||
"""Initialization examples that are used as defaults and examples"""
|
||||
|
||||
def random_initialization(ga):
|
||||
"""Takes the initialization inputs and choregraphs them to output the type of population
|
||||
with the given parameters."""
|
||||
# Create the population object
|
||||
population = create_population()
|
||||
|
||||
# Fill the population with chromosomes
|
||||
for i in range(ga.population_size):
|
||||
chromosome = create_chromosome()
|
||||
#Fill the Chromosome with genes
|
||||
for j in range(ga.chromosome_length):
|
||||
# Using the chromosome_impl to set every index inside of the chromosome
|
||||
if ga.chromosome_impl != None:
|
||||
# Each chromosome location is specified with its own function
|
||||
chromosome.add_gene(create_gene(ga.chromosome_impl(j)))
|
||||
# Will break if chromosome_length != len(lists) in domain
|
||||
elif ga.gene_impl != None:
|
||||
# gene_impl = [range function,lowerbound,upperbound]
|
||||
function = ga.gene_impl[0]
|
||||
chromosome.add_gene(create_gene(function(*ga.gene_impl[1:])))
|
||||
else:
|
||||
#Exit because either were not specified
|
||||
print("Your domain or range were not specified")
|
||||
population.add_chromosome(chromosome)
|
||||
return population
|
||||
0
src/initialization/population_structure/__init__.py
Normal file
0
src/initialization/population_structure/__init__.py
Normal file
@ -1,24 +1,25 @@
|
||||
class Population:
|
||||
|
||||
# fitness = Empty; population = [chromosome, chromosome, etc.]
|
||||
def __init__(self, chromosomes = None):
|
||||
if chromosomes is None:
|
||||
def __init__(self, chromosome_list = None):
|
||||
"""Intiialize the population with fitness of value None, and a set of chromosomes dependant on user-passed parameter"""
|
||||
if chromosome_list is None:
|
||||
self.chromosome_list = []
|
||||
else:
|
||||
self.chromosome_list = chromosomes
|
||||
self.chromosome_list = chromosome_list
|
||||
self.fitness = None
|
||||
self.mating_pool = []
|
||||
|
||||
def get_closet_fitness(self,value):
|
||||
# Get the chomosome that has the closets fitness to the value defined
|
||||
"""Get the chomosome that has the closets fitness to the value defined"""
|
||||
pass
|
||||
|
||||
def add_chromosome(self, chromosome, index = -1):
|
||||
"""Adds a chromosome to the population at the input index, defaulted to the end of the chromosome set"""
|
||||
if index == -1:
|
||||
index = len(self.chromosome_list)
|
||||
self.chromosome_list.insert(index, chromosome)
|
||||
|
||||
def remove_chromosome(self, index):
|
||||
"""removes a chromosome from the indicated index"""
|
||||
del self.chromosome_list[index]
|
||||
|
||||
def get_all_chromosomes(self):
|
||||
@ -26,6 +27,7 @@ class Population:
|
||||
return self.chromosome_list
|
||||
|
||||
def get_fitness(self):
|
||||
"""returns the population's fitness"""
|
||||
return self.fitness
|
||||
|
||||
def set_all_chromosomes(self, chromosomes):
|
||||
@ -37,6 +39,7 @@ class Population:
|
||||
self.chromosome_list[index] = chromosome
|
||||
|
||||
def set_fitness(self, fitness):
|
||||
"""Sets the fitness value of the population"""
|
||||
self.fitness = fitness
|
||||
|
||||
def __repr__(self):
|
||||
@ -44,8 +47,9 @@ class Population:
|
||||
return f'{self.chromosome_list[index]}'
|
||||
|
||||
def print_all(self):
|
||||
# Ex .Current population
|
||||
# Chromosome 1 - [gene][gene][gene][.etc] / Chromosome fitness - #
|
||||
"""Prints information about the population in the following format:"""
|
||||
"""Ex .Current population"""
|
||||
"""Chromosome 1 - [gene][gene][gene][.etc] / Chromosome fitness - """
|
||||
print("Current population:")
|
||||
for index in range(len(self.chromosome_list)):
|
||||
print(f'Chromosome - {index} {self.chromosome_list[index]}', end = "")
|
||||
|
||||
0
src/initialization/test_methods.py
Normal file
0
src/initialization/test_methods.py
Normal file
3
src/mutation/methods.py
Normal file
3
src/mutation/methods.py
Normal file
@ -0,0 +1,3 @@
|
||||
class Mutation_methods:
|
||||
"""Mutation examples will go here """
|
||||
pass
|
||||
0
src/mutation/test_methods.py
Normal file
0
src/mutation/test_methods.py
Normal file
2
src/parent_selection/__init__.py
Normal file
2
src/parent_selection/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .methods import Parent_methods
|
||||
37
src/parent_selection/methods.py
Normal file
37
src/parent_selection/methods.py
Normal file
@ -0,0 +1,37 @@
|
||||
class Parent_methods:
|
||||
"""Selection defintion here"""
|
||||
|
||||
def tournament_selection(ga,matchs):
|
||||
"""Tournament selection involves running several "tournaments" among a
|
||||
few individuals (or "chromosomes")chosen at random from the population.
|
||||
The winner of each tournament (the one with the best fitness) is selected
|
||||
for crossover.
|
||||
Ex
|
||||
Chromsome 1----1 wins ------
|
||||
Chromsome 2---- - --1 wins----
|
||||
- -
|
||||
Chromsome 3----3 wins ------ -- 5 Wins --->Chromosome 5 becomes Parent
|
||||
Chromsome 4---- -
|
||||
-
|
||||
Chromsome 5----5 wins ---------5 wins----
|
||||
Chromsome 6----
|
||||
^--Matchs--^
|
||||
"""
|
||||
|
||||
def small_tournament(ga):
|
||||
""" Small tournament is only one round of tournament. Beat the other
|
||||
randomly selected chromosome and your are selected as a parent.
|
||||
Chromosome 1----
|
||||
-- 1 wins -> Becomes selected for crossover.
|
||||
Chromosome 2----
|
||||
"""
|
||||
pass
|
||||
|
||||
def roulette_selection(ga):
|
||||
"""Roulette selection works based off of how strong the fitness is of the
|
||||
chromosomes in the population. The stronger the fitness the higher the probability
|
||||
that it will be selected. Using the example of a casino roulette wheel.
|
||||
Where the chromosomes are the numbers to be selected and the board size for
|
||||
those numbers are directly proportional to the chromosome's current fitness. Where
|
||||
the ball falls is a randomly generated number between 0 and 1"""
|
||||
pass
|
||||
0
src/parent_selection/test_methods.py
Normal file
0
src/parent_selection/test_methods.py
Normal file
1
src/survivor_selection/README.md
Normal file
1
src/survivor_selection/README.md
Normal file
@ -0,0 +1 @@
|
||||
# Selection functions
|
||||
2
src/survivor_selection/__init__.py
Normal file
2
src/survivor_selection/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .methods import Survivor_methods
|
||||
8
src/survivor_selection/methods.py
Normal file
8
src/survivor_selection/methods.py
Normal file
@ -0,0 +1,8 @@
|
||||
class Survivor_methods:
|
||||
"""Survivor methods defintion here"""
|
||||
|
||||
def elitism():
|
||||
pass
|
||||
|
||||
def remove_two_worst():
|
||||
pass
|
||||
0
src/survivor_selection/test_methods.py
Normal file
0
src/survivor_selection/test_methods.py
Normal file
16
src/termination_point/methods.py
Normal file
16
src/termination_point/methods.py
Normal file
@ -0,0 +1,16 @@
|
||||
class Termination_methods:
|
||||
"""Example functions that can be used to terminate the the algorithms loop"""
|
||||
|
||||
def fitness_based(ga):
|
||||
"""Fitness based approach to terminate when the goal fitness has been reached"""
|
||||
status = True
|
||||
if(ga.current_fitness > ga.fitness_goal):
|
||||
status = False
|
||||
return status
|
||||
|
||||
def generation_based(ga):
|
||||
"""Generation based approach to terminate when the goal generation has been reached"""
|
||||
status = True
|
||||
if(ga.current_generation > ga.generation_goal):
|
||||
status = False
|
||||
return status
|
||||
0
src/termination_point/test_methods.py
Normal file
0
src/termination_point/test_methods.py
Normal file
Reference in New Issue
Block a user