Added the termination features
This commit is contained in:
@ -4,75 +4,91 @@ import random
|
||||
from initialization import population as create_population
|
||||
from initialization import chromosome as create_chromosome
|
||||
from initialization import gene as create_gene
|
||||
from fitness_function import default_fitness_example
|
||||
# Import the default fitness function
|
||||
from fitness_function import is_the_value_5
|
||||
# Import default termination points
|
||||
from termination_point import generation_based
|
||||
from termination_point import fitness_based
|
||||
# Import functionality defaults
|
||||
from initialization import random_initialization
|
||||
|
||||
class GA:
|
||||
def __init__(self):
|
||||
"""Initialize the GA."""
|
||||
# Default variables
|
||||
# Initilization variables
|
||||
self.chromosome_length = 3
|
||||
self.population_size = 5
|
||||
self.chromosome_impl = None
|
||||
self.gene_impl = None
|
||||
self.population = None
|
||||
# Termination varibles
|
||||
self.current_generation = 0
|
||||
self.generations = 3
|
||||
self.chromosome_length = 3
|
||||
self.population_size = 5
|
||||
self.max_generations = 3
|
||||
self.current_fitness = 0
|
||||
self.goal_fitness = 3
|
||||
# Mutation variables
|
||||
self.mutation_rate = 0.03
|
||||
|
||||
# Defualt EastGA implimentation structure
|
||||
self.initialization_impl = random_initialization
|
||||
self.fitness_funciton_impl = default_fitness_example
|
||||
self.fitness_funciton_impl = is_the_value_5
|
||||
#self.mutation_impl = PerGeneMutation(Mutation_rate)
|
||||
#self.selection_impl = TournamentSelection()
|
||||
#self.crossover_impl = FastSinglePointCrossover()
|
||||
#self.termination_impl = GenerationTermination(Total_generations)
|
||||
self.termination_impl = generation_based
|
||||
#self.evaluation_impl = TestEvaluation()
|
||||
|
||||
# If we want the fitnesses to be updated by the computer
|
||||
self.update_fitness = True
|
||||
|
||||
def initialize_population(self):
|
||||
"""Initialize the population"""
|
||||
"""Initialize the population using the initialization
|
||||
implimentation that is currently set"""
|
||||
self.population = self.initialization_impl(
|
||||
self.population_size,
|
||||
self.chromosome_length,
|
||||
self.chromosome_impl,
|
||||
self.gene_impl)
|
||||
|
||||
def get_population_fitness(self,population):
|
||||
"""Will get and set the fitness of each chromosome in the population"""
|
||||
# Get each chromosome in the population
|
||||
for chromosome in population:
|
||||
# Set the chromosomes fitness using the fitness function
|
||||
chromosome.fitness = self.fitness_funciton_impl(chromosome)
|
||||
|
||||
def evolve(self):
|
||||
"""Runs the ga until the termination point has been satisfied."""
|
||||
self.initialize_population()
|
||||
#while(self.active()):
|
||||
#if(self.current_generation == 0):
|
||||
#initialize_population()
|
||||
# While the termination point hasnt been reached keep running
|
||||
while(self.active()):
|
||||
# If its the first generation then initialize the population
|
||||
if(self.current_generation == 0):
|
||||
# Initialize the population
|
||||
self.initialize_population()
|
||||
# First get the fitness of the population
|
||||
self.get_population_fitness(self.population.chromosomes)
|
||||
|
||||
print(f"Ive completed generation - {self.current_generation}")
|
||||
|
||||
self.current_generation += 1
|
||||
|
||||
#get_fitness(population)
|
||||
|
||||
# run one iteration while the ga is active
|
||||
#while self.active():
|
||||
#self.evolve_generation(1)
|
||||
|
||||
def active(self):
|
||||
"""Returns if the ga should terminate base on the termination implimented"""
|
||||
# Send termination_impl the whole ga class
|
||||
return self.termination_impl(self)
|
||||
|
||||
|
||||
def evolve_generation(self, number_of_generations):
|
||||
"""Evolves the ga the specified number of generations.
|
||||
If update_fitness is set then all fitness values are updated.
|
||||
Otherwise only fitness values set to None (i.e. uninitialized fitness values) are updated."""
|
||||
Otherwise only fitness values set to None (i.e. uninitialized
|
||||
fitness values) are updated."""
|
||||
|
||||
# run the specified number of times
|
||||
for n in range(number_of_generations):
|
||||
#for n in range(number_of_generations):
|
||||
|
||||
# for each chromosome in the population
|
||||
for chromosome in self.population.get_all_chromosomes():
|
||||
|
||||
# if the fitness should be updated, update it
|
||||
if self.update_fitness or chromosome.get_fitness() is None:
|
||||
chromosome.set_fitness(self.fitness_impl(chromosome))
|
||||
|
||||
# apply selection, crossover, and mutation
|
||||
|
||||
|
||||
@ -0,0 +1 @@
|
||||
# From file name import function name
|
||||
|
||||
@ -1 +1,2 @@
|
||||
from .default_fitness_example import default_fitness_example
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .is_the_value_5 import is_the_value_5
|
||||
|
||||
@ -1,2 +0,0 @@
|
||||
def default_fitness_example():
|
||||
pass
|
||||
14
src/fitness_function/is_the_value_5.py
Normal file
14
src/fitness_function/is_the_value_5.py
Normal file
@ -0,0 +1,14 @@
|
||||
def is_the_value_5(chromosome):
|
||||
"""A very simple case test function - If the chromosomes gene value is a 5 add one
|
||||
to the chromosomes overall fitness value."""
|
||||
|
||||
# Overall fitness value
|
||||
fitness = 0
|
||||
# For each gene in the chromosome
|
||||
for gene in chromosome.genes:
|
||||
# Check if its value = 5
|
||||
if(gene.value == 5):
|
||||
# If its value is 5 then add one to
|
||||
# the overal fitness of the chromosome.
|
||||
fitness += 1
|
||||
return fitness
|
||||
@ -1,4 +1,4 @@
|
||||
# __init__.py
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .random_initialization import random_initialization
|
||||
from .population_structure.population import population
|
||||
from .chromosome_structure.chromosome import chromosome
|
||||
|
||||
@ -4,11 +4,10 @@ import random
|
||||
ga = EasyGA.GA()
|
||||
|
||||
ga.chromosome_length = 3
|
||||
|
||||
ga.max_generations = 5
|
||||
# If the user wants to use a domain
|
||||
ga.gene_impl = [random.randrange,1,10]
|
||||
|
||||
|
||||
# Run Everyhting
|
||||
ga.evolve()
|
||||
|
||||
|
||||
@ -0,0 +1,3 @@
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .generation_based import generation_based
|
||||
from .fitness_based import fitness_based
|
||||
|
||||
5
src/termination_point/fitness_based.py
Normal file
5
src/termination_point/fitness_based.py
Normal file
@ -0,0 +1,5 @@
|
||||
def fitness_based(ga):
|
||||
status = True
|
||||
if(ga.current_fitness > ga.goal_fitness):
|
||||
status = False
|
||||
return status
|
||||
5
src/termination_point/generation_based.py
Normal file
5
src/termination_point/generation_based.py
Normal file
@ -0,0 +1,5 @@
|
||||
def generation_based(ga):
|
||||
status = True
|
||||
if(ga.current_generation > ga.max_generations):
|
||||
status = False
|
||||
return status
|
||||
Reference in New Issue
Block a user