diff --git a/src/EasyGA.py b/src/EasyGA.py index 5e17553..3da3a6f 100644 --- a/src/EasyGA.py +++ b/src/EasyGA.py @@ -27,16 +27,16 @@ from structure import Chromosome as make_chromosome from structure import Gene as make_gene # Misc. Methods -from fitness_function import Fitness_Examples -from termination_point import Termination_Methods +from fitness_examples import Fitness_Examples +from termination import Termination # Parent/Survivor Selection Methods -from parent_selection import Parent_Selection -from survivor_selection import Survivor_Selection +from parent import Parent +from survivor import Survivor # Genetic Operator Methods -from crossover import Crossover_Methods -from mutation import Mutation_Methods +from crossover import Crossover +from mutation import Mutation # Default Attributes for the GA from attributes import Attributes diff --git a/src/attributes.py b/src/attributes.py index 95615c9..52020aa 100644 --- a/src/attributes.py +++ b/src/attributes.py @@ -14,16 +14,16 @@ from structure import Chromosome as make_chromosome from structure import Gene as make_gene # Misc. Methods -from fitness_function import Fitness_Examples -from termination_point import Termination_Methods +from fitness_examples import Fitness_Examples +from termination import Termination # Parent/Survivor Selection Methods -from parent_selection import Parent_Selection -from survivor_selection import Survivor_Selection +from parent import Parent +from survivor import Survivor # Genetic Operator Methods -from crossover import Crossover_Methods -from mutation import Mutation_Methods +from crossover import Crossover +from mutation import Mutation # Database class from database import sql_database @@ -225,44 +225,44 @@ class Attributes: return random.randint(1, 10) - def _fitness_function_impl(self, *args, **kwargs): + def fitness_function_impl(self, *args, **kwargs): """Default fitness function. Returns the number of genes that are 5.""" return Fitness_Examples.is_it_5(*args, **kwargs) def parent_selection_impl(self, *args, **kwargs): """Default parent selection method using tournament selection.""" - return Parent_Selection.Rank.tournament(self, *args, **kwargs) + return Parent.Rank.tournament(self, *args, **kwargs) def crossover_individual_impl(self, *args, **kwargs): """Default individual crossover method using single point crossover.""" - return Crossover_Methods.Individual.single_point(self, *args, **kwargs) + return Crossover.Individual.single_point(self, *args, **kwargs) def crossover_population_impl(self, *args, **kwargs): """Default population crossover method using sequential selection.""" - return Crossover_Methods.Population.sequential_selection(self, *args, **kwargs) + return Crossover.Population.sequential(self, *args, **kwargs) def survivor_selection_impl(self, *args, **kwargs): """Default survivor selection method using the fill in best method.""" - return Survivor_Selection.fill_in_best(self, *args, **kwargs) + return Survivor.fill_in_best(self, *args, **kwargs) def mutation_individual_impl(self, *args, **kwargs): """Default individual mutation method by randomizing individual genes.""" - return Mutation_Methods.Individual.individual_genes(self, *args, **kwargs) + return Mutation.Individual.individual_genes(self, *args, **kwargs) def mutation_population_impl(self, *args, **kwargs): """Default population mutation method selects chromosomes randomly while avoiding the best.""" - return Mutation_Methods.Population.random_avoid_best(self, *args, **kwargs) + return Mutation.Population.random_avoid_best(self, *args, **kwargs) def termination_impl(self, *args, **kwargs): """Default termination method by testing the fitness, generation, and tolerance goals.""" - return Termination_Methods.fitness_generation_tolerance(self, *args, **kwargs) + return Termination.fitness_generation_tolerance(self, *args, **kwargs) #============================#