Several Changes
Crossover/Mutation: - Split into individual and population subclasses. - Added sequential population crossover selection. - Renamed and reimplemented mutation methods. EasyGA: - Improved make_obj methods for the chromosomes and populations to take arguments. Initialization: - Improved to shorter code. - Fixed repeated error messages Chromosome: - Changed get/set_genes to get/set_gene_list.
This commit is contained in:
@ -1,46 +1,63 @@
|
||||
import random
|
||||
|
||||
class Mutation_Methods:
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def random_mutation(ga, chromosome_set = None):
|
||||
"""Will take the input population and randomly reset entire chromosomes based on the GA's mutation rate"""
|
||||
class Population:
|
||||
"""Methods for selecting chromosomes to mutate"""
|
||||
|
||||
"""Defaulting to the GA's current population if no input is explicitly given"""
|
||||
if chromosome_set == None:
|
||||
chromosome_set = ga.population.get_all_chromosomes()
|
||||
def random_selection(ga):
|
||||
"""Selects random chromosomes"""
|
||||
|
||||
chromosome_mutate_num = int(len(chromosome_set)*ga.mutation_rate)
|
||||
temp_population = ga.initialization_impl(ga)
|
||||
# Loop through the population
|
||||
for index in range(ga.population.size()):
|
||||
|
||||
"""While more chromosomes need to be mutated, grab a random chromosome and re-initialize it entirely"""
|
||||
while chromosome_mutate_num > 0:
|
||||
chromosome_set[random.randint(0,ga.population_size-1)] = temp_population.get_all_chromosomes()[chromosome_mutate_num]
|
||||
chromosome_mutate_num -= 1
|
||||
|
||||
return chromosome_set
|
||||
|
||||
def per_gene_mutation(ga, chromosome_set = None, gene_mutate_count = 1):
|
||||
"""Will iterate through all chromosomes, and if its selected, will randomly replace one of its genes based on initialization values"""
|
||||
# Randomly apply mutations
|
||||
if random.uniform(0, 1) < ga.mutation_rate:
|
||||
ga.population.set_chromosome(ga.mutation_individual_impl(ga, ga.population.get_all_chromosomes()[index]), index)
|
||||
|
||||
gene_mutate_count_static = int(gene_mutate_count)
|
||||
|
||||
if chromosome_set == None:
|
||||
chromosome_set = ga.population.get_all_chromosomes()
|
||||
class Individual:
|
||||
"""Methods for mutating a single chromosome"""
|
||||
|
||||
for i in range(len(chromosome_set)):
|
||||
random_num = random.uniform(0,1)
|
||||
def whole_chromosome(ga, chromosome):
|
||||
"""Makes a completely random chromosome"""
|
||||
|
||||
"""If a chromosome was selected to be mutated"""
|
||||
if (random_num <= ga.mutation_rate):
|
||||
while gene_mutate_count > 0:
|
||||
dummy_population = ga.initialization_impl(ga) #Really inefficient, but works for now
|
||||
random_index = random.randint(0, ga.chromosome_length-1)
|
||||
"""Replaces a random gene in the actual chromosome with a gene from a newly initialized chromosome"""
|
||||
chromosome_set[i].get_genes()[random_index] = dummy_population.get_all_chromosomes()[random.randint(0,ga.population_size-1)].get_genes()[random_index]
|
||||
gene_mutate_count -= 1
|
||||
gene_mutate_count = int(gene_mutate_count_static)
|
||||
# Using the chromosome_impl to set every index inside of the chromosome
|
||||
if ga.chromosome_impl != None:
|
||||
return ga.make_chromosome([
|
||||
ga.make_gene(ga.chromosome_impl(j))
|
||||
for j in range(chromosome.size())])
|
||||
|
||||
return chromosome_set
|
||||
# Using the gene_impl
|
||||
elif ga.gene_impl != None:
|
||||
function = ga.gene_impl[0]
|
||||
return ga.make_chromosome([
|
||||
ga.make_gene(function(*ga.gene_impl[1:]))
|
||||
for j in range(chromosome.size())])
|
||||
|
||||
# Exit because no gene creation method specified
|
||||
else:
|
||||
print("You did not specify any initialization constraints.")
|
||||
return None
|
||||
|
||||
|
||||
def single_gene(ga, chromosome):
|
||||
"""Makes a completely random chromosome"""
|
||||
chromosome.set_fitness(None)
|
||||
|
||||
# Using the chromosome_impl
|
||||
if ga.chromosome_impl != None:
|
||||
index = random.randint(0, chromosome.size()-1)
|
||||
chromosome.set_gene(ga.make_gene(ga.chromosome_impl(index)), index)
|
||||
|
||||
# Using the gene_impl
|
||||
elif ga.gene_impl != None:
|
||||
function = ga.gene_impl[0]
|
||||
index = random.randint(0, chromosome.size()-1)
|
||||
chromosome.set_gene(ga.make_gene(function(*ga.gene_impl[1:])), index)
|
||||
|
||||
# Exit because no gene creation method specified
|
||||
else:
|
||||
print("You did not specify any initialization constraints.")
|
||||
|
||||
return chromosome
|
||||
|
||||
Reference in New Issue
Block a user