Added atrributes class
This commit is contained in:
@ -1,69 +1,11 @@
|
|||||||
import random
|
import random
|
||||||
|
|
||||||
# Import all the data structure prebuilt modules
|
from attributes import attributes
|
||||||
from structure import Population as create_population
|
|
||||||
from structure import Chromosome as create_chromosome
|
|
||||||
from structure import Gene as create_gene
|
|
||||||
|
|
||||||
# Structure Methods
|
|
||||||
from fitness_function import Fitness_Examples
|
|
||||||
from initialization import Initialization_Methods
|
|
||||||
from termination_point import Termination_Methods
|
|
||||||
|
|
||||||
# Parent/Survivor Selection Methods
|
|
||||||
from parent_selection import Parent_Selection
|
|
||||||
from survivor_selection import Survivor_Selection
|
|
||||||
|
|
||||||
# Genetic Operator Methods
|
|
||||||
from mutation import Mutation_Methods
|
|
||||||
from crossover import Crossover_Methods
|
|
||||||
|
|
||||||
class GA:
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
"""Initialize the GA."""
|
|
||||||
|
|
||||||
# Initilization variables
|
|
||||||
self.chromosome_length = 10
|
|
||||||
self.population_size = 10
|
|
||||||
self.chromosome_impl = None
|
|
||||||
self.gene_impl = lambda: random.randint(1, 10)
|
|
||||||
self.population = None
|
|
||||||
self.target_fitness_type = 'maximum'
|
|
||||||
self.update_fitness = True
|
|
||||||
|
|
||||||
# Selection variables
|
|
||||||
self.parent_ratio = 0.1
|
|
||||||
self.selection_probability = 0.75
|
|
||||||
self.tournament_size_ratio = 0.1
|
|
||||||
|
|
||||||
# Termination variables
|
|
||||||
self.current_generation = 0
|
|
||||||
self.current_fitness = 0
|
|
||||||
self.generation_goal = 15
|
|
||||||
self.fitness_goal = 9
|
|
||||||
|
|
||||||
# Mutation variables
|
|
||||||
self.mutation_rate = 0.10
|
|
||||||
|
|
||||||
# Default EasyGA implimentation structure
|
|
||||||
self.initialization_impl = Initialization_Methods.random_initialization
|
|
||||||
self.fitness_function_impl = Fitness_Examples.is_it_5
|
|
||||||
self.make_population = create_population
|
|
||||||
self.make_chromosome = create_chromosome
|
|
||||||
self.make_gene = create_gene
|
|
||||||
|
|
||||||
# Methods for accomplishing Parent-Selection -> Crossover -> Survivor_Selection -> Mutation
|
|
||||||
self.parent_selection_impl = Parent_Selection.Tournament.with_replacement
|
|
||||||
self.crossover_individual_impl = Crossover_Methods.Individual.single_point
|
|
||||||
self.crossover_population_impl = Crossover_Methods.Population.random_selection
|
|
||||||
self.survivor_selection_impl = Survivor_Selection.fill_in_best
|
|
||||||
self.mutation_individual_impl = Mutation_Methods.Individual.single_gene
|
|
||||||
self.mutation_population_impl = Mutation_Methods.Population.random_selection
|
|
||||||
|
|
||||||
# The type of termination to impliment
|
|
||||||
self.termination_impl = Termination_Methods.generation_based
|
|
||||||
|
|
||||||
|
class GA(attributes):
|
||||||
|
def __init__(self): # Inhert all the ga attributes
|
||||||
|
super(GA, self).__init__() # from the attributes class
|
||||||
|
|
||||||
def evolve_generation(self, number_of_generations = 1, consider_termination = True):
|
def evolve_generation(self, number_of_generations = 1, consider_termination = True):
|
||||||
"""Evolves the ga the specified number of generations."""
|
"""Evolves the ga the specified number of generations."""
|
||||||
@ -136,14 +78,3 @@ class GA:
|
|||||||
return sorted(chromosome_set, # list to be sorted
|
return sorted(chromosome_set, # list to be sorted
|
||||||
key = lambda chromosome: chromosome.get_fitness(), # by fitness
|
key = lambda chromosome: chromosome.get_fitness(), # by fitness
|
||||||
reverse = True) # from highest to lowest fitness
|
reverse = True) # from highest to lowest fitness
|
||||||
|
|
||||||
# Example of how the setter error checking will look like
|
|
||||||
@property
|
|
||||||
def chromosome_length(self):
|
|
||||||
return self._chromosome_length
|
|
||||||
|
|
||||||
@chromosome_length.setter
|
|
||||||
def chromosome_length(self, value_input):
|
|
||||||
if(value_input == 0):
|
|
||||||
raise ValueError("Sorry your chromosome length must be greater then 0")
|
|
||||||
self._chromosome_length = value_input
|
|
||||||
|
|||||||
75
src/attributes.py
Normal file
75
src/attributes.py
Normal file
@ -0,0 +1,75 @@
|
|||||||
|
import random
|
||||||
|
|
||||||
|
# Import all the data structure prebuilt modules
|
||||||
|
from structure import Population as create_population
|
||||||
|
from structure import Chromosome as create_chromosome
|
||||||
|
from structure import Gene as create_gene
|
||||||
|
|
||||||
|
# Structure Methods
|
||||||
|
from fitness_function import Fitness_Examples
|
||||||
|
from initialization import Initialization_Methods
|
||||||
|
from termination_point import Termination_Methods
|
||||||
|
|
||||||
|
# Parent/Survivor Selection Methods
|
||||||
|
from parent_selection import Parent_Selection
|
||||||
|
from survivor_selection import Survivor_Selection
|
||||||
|
|
||||||
|
# Genetic Operator Methods
|
||||||
|
from mutation import Mutation_Methods
|
||||||
|
from crossover import Crossover_Methods
|
||||||
|
|
||||||
|
class attributes:
|
||||||
|
def __init__(self):
|
||||||
|
"""Initialize the GA."""
|
||||||
|
|
||||||
|
# Initilization variables
|
||||||
|
self.chromosome_length = 10
|
||||||
|
self.population_size = 10
|
||||||
|
self.chromosome_impl = None
|
||||||
|
self.gene_impl = lambda: random.randint(1, 10)
|
||||||
|
self.population = None
|
||||||
|
self.target_fitness_type = 'maximum'
|
||||||
|
self.update_fitness = True
|
||||||
|
|
||||||
|
# Selection variables
|
||||||
|
self.parent_ratio = 0.1
|
||||||
|
self.selection_probability = 0.75
|
||||||
|
self.tournament_size_ratio = 0.1
|
||||||
|
|
||||||
|
# Termination variables
|
||||||
|
self.current_generation = 0
|
||||||
|
self.current_fitness = 0
|
||||||
|
self.generation_goal = 15
|
||||||
|
self.fitness_goal = 9
|
||||||
|
|
||||||
|
# Mutation variables
|
||||||
|
self.mutation_rate = 0.10
|
||||||
|
|
||||||
|
# Default EasyGA implimentation structure
|
||||||
|
self.initialization_impl = Initialization_Methods.random_initialization
|
||||||
|
self.fitness_function_impl = Fitness_Examples.is_it_5
|
||||||
|
self.make_population = create_population
|
||||||
|
self.make_chromosome = create_chromosome
|
||||||
|
self.make_gene = create_gene
|
||||||
|
|
||||||
|
# Methods for accomplishing Parent-Selection -> Crossover -> Survivor_Selection -> Mutation
|
||||||
|
self.parent_selection_impl = Parent_Selection.Tournament.with_replacement
|
||||||
|
self.crossover_individual_impl = Crossover_Methods.Individual.single_point
|
||||||
|
self.crossover_population_impl = Crossover_Methods.Population.random_selection
|
||||||
|
self.survivor_selection_impl = Survivor_Selection.fill_in_best
|
||||||
|
self.mutation_individual_impl = Mutation_Methods.Individual.single_gene
|
||||||
|
self.mutation_population_impl = Mutation_Methods.Population.random_selection
|
||||||
|
|
||||||
|
# The type of termination to impliment
|
||||||
|
self.termination_impl = Termination_Methods.generation_based
|
||||||
|
|
||||||
|
# Example of how the setter error checking will look like
|
||||||
|
@property
|
||||||
|
def chromosome_length(self):
|
||||||
|
return self._chromosome_length
|
||||||
|
|
||||||
|
@chromosome_length.setter
|
||||||
|
def chromosome_length(self, value_input):
|
||||||
|
if(value_input == 0):
|
||||||
|
raise ValueError("Sorry your chromosome length must be greater then 0")
|
||||||
|
self._chromosome_length = value_input
|
||||||
@ -4,7 +4,7 @@ import EasyGA
|
|||||||
# Create the Genetic algorithm
|
# Create the Genetic algorithm
|
||||||
ga = EasyGA.GA()
|
ga = EasyGA.GA()
|
||||||
|
|
||||||
ga.chromosome_length = 0
|
ga.chromosome_length = 100
|
||||||
|
|
||||||
ga.evolve()
|
ga.evolve()
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user