Added more structure methods and some quality of life changes
Overall cleaned up a lot of comments. EasyGA: - Code cleanup. Population: - Added sort_by_best_fitness - Added parent/mating pool methods. - Renamed some methods for consistency. Chromosome: - Added get_gene(index). Parent Selection: - Improved selection methods to use the ga.selection_probability so that the roulette selection actually works well. - Added stochastic selection. Survivor Selection: - Added fill_in_random and fill_in_parents_then_random. Crossover/Mutation: - Cleaned up code.
This commit is contained in:
@ -10,11 +10,11 @@ from fitness_function import Fitness_Examples
|
||||
from initialization import Initialization_Methods
|
||||
from termination_point import Termination_Methods
|
||||
|
||||
# Population Methods
|
||||
from survivor_selection import Survivor_Selection
|
||||
# Parent/Survivor Selection Methods
|
||||
from parent_selection import Parent_Selection
|
||||
from survivor_selection import Survivor_Selection
|
||||
|
||||
# Manipulation Methods
|
||||
# Genetic Operator Methods
|
||||
from mutation import Mutation_Methods
|
||||
from crossover import Crossover_Methods
|
||||
|
||||
@ -23,25 +23,24 @@ class GA:
|
||||
def __init__(self):
|
||||
"""Initialize the GA."""
|
||||
# Initilization variables
|
||||
self.chromosome_length = 10
|
||||
self.population_size = 10
|
||||
self.chromosome_impl = None
|
||||
self.gene_impl = [random.randint,1,10]
|
||||
self.population = None
|
||||
self.chromosome_length = 10
|
||||
self.population_size = 10
|
||||
self.chromosome_impl = None
|
||||
self.gene_impl = [random.randint,1,10]
|
||||
self.population = None
|
||||
self.target_fitness_type = 'maximum'
|
||||
self.update_fitness = True
|
||||
self.update_fitness = True
|
||||
|
||||
# Selection variables
|
||||
self.parent_ratio = 0.1
|
||||
self.parent_ratio = 0.1
|
||||
self.selection_probability = 0.95
|
||||
self.tournament_size_ratio = 0.1
|
||||
|
||||
# Termination variables
|
||||
self.current_generation = 0
|
||||
self.current_fitness = 0
|
||||
|
||||
self.generation_goal = 15
|
||||
self.fitness_goal = 9
|
||||
self.current_fitness = 0
|
||||
self.generation_goal = 15
|
||||
self.fitness_goal = 9
|
||||
|
||||
# Mutation variables
|
||||
self.mutation_rate = 0.10
|
||||
@ -53,13 +52,11 @@ class GA:
|
||||
self.make_chromosome = create_chromosome
|
||||
self.make_gene = create_gene
|
||||
|
||||
# Selects which chromosomes should be automaticly moved to the next population
|
||||
self.survivor_selection_impl = Survivor_Selection.fill_in_best
|
||||
|
||||
# Methods for accomplishing parent-selection -> Crossover -> Mutation
|
||||
# Methods for accomplishing Parent-Selection -> Crossover -> Survivor_Selection -> Mutation
|
||||
self.parent_selection_impl = Parent_Selection.Tournament.with_replacement
|
||||
self.crossover_individual_impl = Crossover_Methods.Individual.single_point_crossover
|
||||
self.crossover_population_impl = Crossover_Methods.Population.random_selection
|
||||
self.survivor_selection_impl = Survivor_Selection.fill_in_best
|
||||
self.mutation_individual_impl = Mutation_Methods.Individual.single_gene
|
||||
self.mutation_population_impl = Mutation_Methods.Population.random_selection
|
||||
|
||||
@ -69,57 +66,63 @@ class GA:
|
||||
|
||||
def evolve_generation(self, number_of_generations = 1, consider_termination = True):
|
||||
"""Evolves the ga the specified number of generations."""
|
||||
while(number_of_generations > 0 and (consider_termination == False or self.termination_impl(self))):
|
||||
|
||||
# Evolve the specified number of generations
|
||||
# and if consider_termination flag is set then
|
||||
# also check if termination conditions reached
|
||||
while(number_of_generations > 0 and (not consider_termination or self.termination_impl(self))):
|
||||
|
||||
# If its the first generation then initialize the population
|
||||
if self.current_generation == 0:
|
||||
self.initialize_population()
|
||||
self.set_all_fitness(self.population.chromosome_list)
|
||||
self.population.set_all_chromosomes(self.sort_by_best_fitness(self.population.get_all_chromosomes()))
|
||||
self.set_all_fitness()
|
||||
self.population.sort_by_best_fitness(self)
|
||||
|
||||
# Otherwise evolve the population
|
||||
else:
|
||||
self.set_all_fitness(self.population.chromosome_list)
|
||||
self.population.reset_mating_pool()
|
||||
self.set_all_fitness()
|
||||
self.population.set_all_chromosomes(self.sort_by_best_fitness(self.population.get_all_chromosomes()))
|
||||
self.parent_selection_impl(self)
|
||||
next_population = self.crossover_population_impl(self)
|
||||
next_population = self.survivor_selection_impl(self, next_population)
|
||||
self.population = next_population
|
||||
self.survivor_selection_impl(self, next_population)
|
||||
self.mutation_population_impl(self)
|
||||
self.set_all_fitness(self.population.chromosome_list)
|
||||
self.population.set_all_chromosomes(self.sort_by_best_fitness(self.population.get_all_chromosomes()))
|
||||
|
||||
number_of_generations -= 1
|
||||
|
||||
self.current_generation += 1
|
||||
|
||||
|
||||
def evolve(self):
|
||||
"""Runs the ga until the termination point has been satisfied."""
|
||||
# While the termination point hasnt been reached keep running
|
||||
while(self.active()):
|
||||
self.evolve_generation()
|
||||
|
||||
|
||||
def active(self):
|
||||
"""Returns if the ga should terminate base on the termination implimented"""
|
||||
# Send termination_impl the whole ga class
|
||||
"""Returns if the ga should terminate based on the termination implimented."""
|
||||
return self.termination_impl(self)
|
||||
|
||||
|
||||
def initialize_population(self):
|
||||
"""Initialize the population using the initialization
|
||||
implimentation that is currently set
|
||||
"""Initialize the population using
|
||||
the initialization implimentation
|
||||
that is currently set.
|
||||
"""
|
||||
self.population = self.initialization_impl(self)
|
||||
|
||||
|
||||
def set_all_fitness(self, chromosome_set):
|
||||
def set_all_fitness(self):
|
||||
"""Will get and set the fitness of each chromosome in the population.
|
||||
If update_fitness is set then all fitness values are updated.
|
||||
Otherwise only fitness values set to None (i.e. uninitialized
|
||||
fitness values) are updated."""
|
||||
# Get each chromosome in the population
|
||||
fitness values) are updated.
|
||||
"""
|
||||
|
||||
for chromosome in chromosome_set:
|
||||
if(chromosome.fitness == None or self.update_fitness == True):
|
||||
# Set the chromosomes fitness using the fitness function
|
||||
# Check each chromosome
|
||||
for chromosome in self.population.get_all_chromosomes():
|
||||
|
||||
# Update fitness if needed or asked by the user
|
||||
if(chromosome.get_fitness() is None or self.update_fitness):
|
||||
chromosome.set_fitness(self.fitness_function_impl(chromosome))
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user