# Import all the data structure prebuilt modules from structure import Population as create_population from structure import Chromosome as create_chromosome from structure import Gene as create_gene # Structure Methods from fitness_function import Fitness_Examples from initialization import Initialization_Methods from termination_point import Termination_Methods # Parent/Survivor Selection Methods from parent_selection import Parent_Selection from survivor_selection import Survivor_Selection # Genetic Operator Methods from mutation import Mutation_Methods from crossover import Crossover_Methods # Default Attributes for the GA from attributes import Attributes # Database class from database import database from sqlite3 import Error class GA(Attributes): """GA is the main class in EasyGA. Everything is run through the ga class. The GA class inherites all the default ga attributes from the attributes class. An extensive wiki going over all major functions can be found at https://github.com/danielwilczak101/EasyGA/wiki """ def __init__(self, attributes = None): super(GA, self).__init__({} if attributes is None else attributes) def evolve_generation(self, number_of_generations = 1, consider_termination = True): """Evolves the ga the specified number of generations.""" while(number_of_generations > 0 # Evolve the specified number of generations and (not consider_termination # and if consider_termination flag is set or self.active())): # then also check if termination conditions reached # If its the first generation if self.current_generation == 0: # Create the database and tables # self.database = database.database() # self.database.create_data_table(self) # Create the initial population self.initialize_population() self.set_all_fitness() self.population.sort_by_best_fitness(self) # Otherwise evolve the population else: self.parent_selection_impl(self) self.crossover_population_impl(self) self.survivor_selection_impl(self) self.population.update() self.mutation_population_impl(self) self.set_all_fitness() self.population.sort_by_best_fitness(self) number_of_generations -= 1 self.current_generation += 1 def evolve(self): """Runs the ga until the termination point has been satisfied.""" while(self.active()): self.evolve_generation() def active(self): """Returns if the ga should terminate based on the termination implimented.""" return self.termination_impl(self) def initialize_population(self): """Initialize the population using the initialization implimentation that is currently set. """ self.population = self.initialization_impl(self) def set_all_fitness(self): """Will get and set the fitness of each chromosome in the population. If update_fitness is set then all fitness values are updated. Otherwise only fitness values set to None (i.e. uninitialized fitness values) are updated. """ # Check each chromosome for chromosome in self.population.get_chromosome_list(): # Update fitness if needed or asked by the user if(chromosome.get_fitness() is None or self.update_fitness): chromosome.set_fitness(self.fitness_function_impl(chromosome)) def sort_by_best_fitness(self, chromosome_set): """Sorts the array by fitness. 1st element has highest fitness. 2nd element has second highest fitness. etc. """ return sorted(chromosome_set, # list to be sorted key = lambda chromosome: chromosome.get_fitness(), # by fitness reverse = (self.target_fitness_type == 'max')) # from highest to lowest fitness def get_chromosome_fitness(self, index): """Returns the fitness value of the chromosome at the specified index after conversion based on the target fitness type. """ return self.convert_fitness( self.population.get_chromosome(index).get_fitness() ) def convert_fitness(self, fitness_value): """Returns the fitness value if the type of problem is a maximization problem. Otherwise the fitness is inverted using max - value + min. """ if self.target_fitness_type == 'max': return fitness_value max_fitness = self.population.get_chromosome(-1).get_fitness() min_fitness = self.population.get_chromosome(0).get_fitness() return max_fitness - fitness_value + min_fitness def print_generation(self): """Prints the current generation""" print(f"Current Generation \t: {self.current_generation}") def print_population(self): """Prints the entire population""" self.population.print_all() def print_best(self): """Prints the best chromosome and its fitness""" print(f"Best Chromosome \t: {self.population.get_chromosome(0)}") print(f"Best Fitness \t: {self.population.get_chromosome(0).get_fitness()}")