from EasyGA import function_info import random # Round to an integer near x with higher probability # the closer it is to that integer. randround = lambda x: int(x + random.random()) @function_info def _append_to_next_population(population_method): """Appends the new chromosomes to the next population. Also modifies the input to include the mating pool. """ def new_method(ga): ga.population.append_children( population_method(ga, ga.population.mating_pool) ) return new_method @function_info def _check_weight(individual_method): """Checks if the weight is between 0 and 1 before running. Exception may occur when using ga.adapt, which will catch the error and try again with valid weight. """ def new_method(ga, parent_1, parent_2, *, weight = individual_method.__kwdefaults__.get('weight', None)): if weight is None: return individual_method(ga, parent_1, parent_2) elif 0 < weight < 1: return individual_method(ga, parent_1, parent_2, weight = weight) else: raise ValueError(f"Weight must be between 0 and 1 when using {individual_method.__name__}.") return new_method class Crossover_Methods: # Allowing access to decorators when importing class _append_to_next_population = _append_to_next_population _check_weight = _check_weight class Population: """Methods for selecting chromosomes to crossover.""" @_append_to_next_population def sequential_selection(ga, mating_pool): """Select sequential pairs from the mating pool. Every parent is paired with the previous parent. The first parent is paired with the last parent. """ for index in range(len(mating_pool)): # for each parent in the mating pool yield ga.crossover_individual_impl( # apply crossover to mating_pool[index], # the parent and mating_pool[index-1], # the previous parent ) @_append_to_next_population def random_selection(ga, mating_pool): """Select random pairs from the mating pool. Every parent is paired with a random parent. """ for parent in mating_pool: # for each parent in the mating pool yield ga.crossover_individual_impl( # apply crossover to parent, # the parent and random.choice(mating_pool), # a random parent ) class Individual: """Methods for crossing parents.""" @_check_weight def single_point(ga, parent_1, parent_2, *, weight = 0.5): """Cross two parents by swapping genes at one random point.""" minimum_parent_length = min(len(parent_1), len(parent_2)) # Equally weighted indexes if weight == 0.5: swap_index = random.randrange(minimum_parent_length) # Use weighted random index. else: weight_conversion = 2*weight if (weight < 0.5) else 0.5 / (1-weight) rand_num = random.random() swap_index = int( minimum_parent_length * (1-(1-rand_num)**weight_conversion)**(1/weight_conversion) ) # Randomly choose which parent's genes are selected first. if random.choice([True, False]): return parent_1[:swap_index] + parent_2[swap_index:] else: return parent_2[:-swap_index] + parent_1[-swap_index:] @_check_weight def multi_point(ga, parent_1, parent_2, *, weight = 0.5): """Cross two parents by swapping genes at multiple points.""" pass @_check_weight def uniform(ga, parent_1, parent_2, *, weight = 0.5): """Cross two parents by swapping all genes randomly.""" for gene_pair in zip(parent_1, parent_2): yield random.choices(gene_pair, cum_weights = [weight, 1])[0] class Arithmetic: """Crossover methods for numerical genes.""" def average(ga, parent_1, parent_2, *, weight = 0.5): """Cross two parents by taking the average of the genes.""" values_1 = parent_1.gene_value_iter values_2 = parent_2.gene_value_iter for value_1, value_2 in zip(values_1, values_2): value = weight*value_1 + (1-weight)*value_2 if type(value_1) == type(value_2) == int: value = randround(value) yield value def extrapolate(ga, parent_1, parent_2, *, weight = 0.5): """Cross two parents by extrapolating towards the first parent. May result in gene values outside the expected domain. """ values_1 = parent_1.gene_value_iter values_2 = parent_2.gene_value_iter for value_1, value_2 in zip(values_1, values_2): value = (2-weight)*value_1 + (weight-1)*value_2 if type(value_1) == type(value_2) == int: value = randround(value) yield value @_check_weight def random(ga, parent_1, parent_2, *, weight = 0.5): """Cross two parents by taking a random integer or float value between each of the genes.""" values_1 = parent_1.gene_value_iter values_2 = parent_2.gene_value_iter for value_1, value_2 in zip(values_1, values_2): # Use equally weighted values. if weight == 0.5: value = random.uniform(value_1, value_2) # Use weighted random value, which gives values closer # to value_1 if weight < 0.5 or values closer to value_2 # if weight > 0.5. else: t = 2*weight if (weight < 0.5) else 0.5 / (1-weight) x = random.random() value = value_1 + (value_2-value_1) * (1-(1-x)**t)**(1/t) if type(value_1) == type(value_2) == int: value = randround(value) yield value class Permutation: """Crossover methods for permutation based chromosomes.""" @_check_weight def ox1(ga, parent_1, parent_2, *, weight = 0.5): """Cross two parents by slicing out a random part of one parent and then filling in the rest of the genes from the second parent.""" # Too small to cross if len(parent_1) < 2: return parent_1.gene_list # Unequal parent lengths if len(parent_1) != len(parent_2): raise ValueError("Parents do not have the same lengths.") # Swap with weighted probability so that most of the genes # are taken directly from parent 1. if random.choices([0, 1], cum_weights = [weight, 1]) == 1: parent_1, parent_2 = parent_2, parent_1 # Extract genes from parent 1 between two random indexes index_2 = random.randrange(1, len(parent_1)) index_1 = random.randrange(index_2) # Create copies of the gene lists gene_list_1 = [None]*index_1 + parent_1[index_1:index_2] + [None]*(len(parent_1)-index_2) gene_list_2 = list(parent_2) input_index = 0 # For each gene from the second parent for _ in range(len(gene_list_2)): # Remove it if it is already used if gene_list_2[-1] in gene_list_1: gene_list_2.pop(-1) # Add it if it has not been used else: if input_index == index_1: input_index = index_2 gene_list_1[input_index] = gene_list_2.pop(-1) input_index += 1 return gene_list_1 @_check_weight def partially_mapped(ga, parent_1, parent_2, *, weight = 0.5): """Cross two parents by slicing out a random part of one parent and then filling in the rest of the genes from the second parent, preserving the ordering of genes wherever possible. NOTE: Needs to be fixed.""" # Too small to cross if len(parent_1) < 2: return parent_1.gene_list # Unequal parent lengths if len(parent_1) != len(parent_2): raise ValueError("Parents do not have the same lengths.") # Swap with weighted probability so that most of the genes # are taken directly from parent 1. if random.choices([0, 1], cum_weights = [weight, 1]) == 1: parent_1, parent_2 = parent_2, parent_1 # Extract genes from parent 1 between two random indexes index_2 = random.randrange(1, len(parent_1)) index_1 = random.randrange(index_2) # Create copies of the gene lists gene_list_1 = [None]*index_1 + parent_1[index_1:index_2] + [None]*(len(parent_1)-index_2) gene_list_2 = list(parent_2) # Create hash for gene list 2 hash = {gene:index for index, gene in enumerate(gene_list_2)} # For each gene in the copied segment from parent 2 for i in range(index_1, index_2): # If it is not already copied, # find where it got displaced to j = i while gene_list_1[(j := hash[gene_list_1[j]])] is not None: pass gene_list_1[j] = gene_list_2[i] # Fill in whatever is leftover (copied from ox1). # For each gene from the second parent for _ in range(len(gene_list_2)): # Remove it if it is already used if gene_list_2[-1] in gene_list_1: gene_list_2.pop(-1) # Add it if it has not been used else: if input_index == index_1: input_index = index_2 gene_list_1[input_index] = gene_list_2.pop(-1) input_index += 1 return gene_list_1