import random import EasyGA # Create the Genetic algorithm ga = EasyGA.GA() # Create 25 chromosomes each with 10 genes ga.population_size = 25 ga.chromosome_length = 10 # Create random genes from 0 to 10 ga.gene_impl = lambda: random.randint(0, 10) # Minimize the sum of the genes ga.fitness_function_impl = lambda chromosome: sum(gene.get_value() for gene in chromosome.get_gene_list()) ga.target_fitness_type = 'min' # Terminate when a chromosome has all 0's ga.fitness_goal = 0 ga.termination_impl = EasyGA.Termination_Methods.fitness_based ga.evolve() print(f"Current Generation: {ga.current_generation}") ga.population.print_all()