import random def append_to_next_population(survivor_method): return lambda ga: ga.population.append_children(survivor_method(ga)) class Survivor_Selection: """Survivor selection determines which individuals should be brought to the next generation""" def __append_to_next_population(survivor_method): return append_to_next_population(survivor_method) @append_to_next_population def fill_in_best(ga): """Fills in the next population with the best chromosomes from the last population""" needed_amount = len(ga.population) - ga.population.total_children return ga.population[:needed_amount] @append_to_next_population def fill_in_random(ga): """Fills in the next population with random chromosomes from the last population""" needed_amount = len(ga.population) - ga.population.total_children return [random.choice(ga.population) for n in range(needed_amount)] @append_to_next_population def fill_in_parents_then_random(ga): """Fills in the next population with all parents followed by random chromosomes from the last population""" needed_amount = len(ga.population) - ga.population.total_children parent_amount = min(ga.population.total_parents, needed_amount) random_amount = needed_amount - parent_amount return ga.population.get_mating_pool()[:parent_amount] + [random.choice(ga.population) for n in range(random_amount)]