import random from math import ceil def check_chromosome_mutation_rate(population_method): """Checks if the chromosome mutation rate is a float between 0 and 1 before running.""" def new_method(ga): if not isinstance(ga.chromosome_mutation_rate, float): raise TypeError("Chromosome mutation rate must be a float.") elif 0 < ga.chromosome_mutation_rate < 1: population_method(ga) else: raise ValueError("Chromosome mutation rate must be between 0 and 1.") return new_method def check_gene_mutation_rate(individual_method): """Checks if the gene mutation rate is a float between 0 and 1 before running.""" def new_method(ga, index): if not isinstance(ga.gene_mutation_rate, float): raise TypeError("Gene mutation rate must be a float.") elif 0 < ga.gene_mutation_rate < 1: individual_method(ga, index) else: raise ValueError("Gene mutation rate must be between 0 and 1.") return new_method def reset_fitness(individual_method): """Resets the fitness value of the chromosome.""" def new_method(ga, chromosome): chromosome.fitness = None individual_method(ga, chromosome) return new_method def loop_random_selections(population_method): """Runs the population method until enough chromosomes are mutated. Provides the indexes of selected chromosomes to mutate using random.sample to get all indexes fast. """ def new_method(ga): sample_space = range(len(ga.population)) sample_size = ceil(len(ga.population)*ga.chromosome_mutation_rate) # Loop the population method until enough chromosomes are mutated. for index in random.sample(sample_space, sample_size): population_method(ga, index) return new_method def loop_random_mutations(individual_method): """Runs the individual method until enough genes are mutated on the indexed chromosome. """ # Change input to include the gene index being mutated. def new_method(ga, chromosome): sample_space = range(len(chromosome)) sample_size = ceil(len(chromosome)*ga.gene_mutation_rate) # Loop the individual method until enough genes are mutated. for index in random.sample(sample_space, sample_size): individual_method(ga, chromosome, index) return new_method class Mutation_Methods: # Private method decorators, see above. _check_chromosome_mutation_rate = check_chromosome_mutation_rate _check_gene_mutation_rate = check_gene_mutation_rate _reset_fitness = reset_fitness _loop_random_selections = loop_random_selections _loop_random_mutations = loop_random_mutations class Population: """Methods for selecting chromosomes to mutate""" @check_chromosome_mutation_rate @loop_random_selections def random_selection(ga, index): """Selects random chromosomes.""" ga.mutation_individual_impl(ga, ga.population[index]) @check_chromosome_mutation_rate @loop_random_selections def random_avoid_best(ga, index): """Selects random chromosomes while avoiding the best chromosomes. (Elitism)""" if index > ga.percent_converged*len(ga.population)*3/16: ga.mutation_individual_impl(ga, ga.population[index]) class Individual: """Methods for mutating a single chromosome.""" @check_gene_mutation_rate @reset_fitness @loop_random_mutations def individual_genes(ga, chromosome, index): """Mutates a random gene in the chromosome.""" # Using the chromosome_impl if ga.chromosome_impl is not None: chromosome[index] = ga.make_gene(ga.chromosome_impl()[index]) # Using the gene_impl elif ga.gene_impl is not None: chromosome[index] = ga.make_gene(ga.gene_impl()) # Exit because no gene creation method specified else: raise Exception("Did not specify any initialization constraints.") class Permutation: """Methods for mutating a chromosome by changing the order of the genes.""" @check_gene_mutation_rate @reset_fitness @loop_random_mutations def swap_genes(ga, chromosome, index): """Swaps two random genes in the chromosome.""" # Indexes of genes to swap index_one = index index_two = random.randrange(index_one) # Swap genes chromosome[index_one], chromosome[index_two] = chromosome[index_two], chromosome[index_one]