Files
EasyGA/src/EasyGA.py
RyleyGG 94d7c52666 Added comments & fixed small bug
Mostly added comments, but also fixed a small bug in parent selection where the tournament size would be much smaller than it should be.
2020-10-12 09:23:41 -04:00

134 lines
5.5 KiB
Python

import random
# Import all the data structure prebuilt modules
from initialization import Population as create_population
from initialization import Chromosome as create_chromosome
from initialization import Gene as create_gene
# Structure Methods
from fitness_function import Fitness_Examples
from initialization import Initialization_Methods
from termination_point import Termination_Methods
# Population Methods
from survivor_selection import Survivor_Selection
from parent_selection import Parent_Selection
# Manipulation Methods
from mutation import Mutation_Methods
from crossover import Crossover_Methods
class GA:
def __init__(self):
"""Initialize the GA."""
# Initilization variables
self.chromosome_length = 10
self.population_size = 150
self.chromosome_impl = None
self.gene_impl = None
self.population = None
self.target_fitness_type = 'maximum'
self.update_fitness = True
# Selection variables
self.parent_ratio = 0.1
self.selection_probability = 0.95
self.tournament_size_ratio = 0.1
# Termination variables
self.current_generation = 0
self.current_fitness = 0
self.generation_goal = 15
self.fitness_goal = 9
# Mutation variables
self.mutation_rate = 0.10
# Default EasyGA implimentation structure
self.initialization_impl = Initialization_Methods.random_initialization
self.fitness_function_impl = Fitness_Examples.index_dependent_values
# Selects which chromosomes should be automaticly moved to the next population
self.survivor_selection_impl = Survivor_Selection.remove_worst
# Methods for accomplishing parent-selection -> Crossover -> Mutation
self.parent_selection_impl = Parent_Selection.Tournament.with_replacement
self.crossover_impl = Crossover_Methods.single_point_crossover
self.mutation_impl = Mutation_Methods.per_gene_mutation
# The type of termination to impliment
self.termination_impl = Termination_Methods.generation_based
def evolve_generation(self, number_of_generations = 1, consider_termination = True):
"""Evolves the ga the specified number of generations."""
while(number_of_generations > 0 and (consider_termination == False or self.termination_impl(self))):
# If its the first generation then initialize the population
if self.current_generation == 0:
self.initialize_population()
self.set_all_fitness(self.population.chromosome_list)
self.population.set_all_chromosomes(self.sort_by_best_fitness(self.population.get_all_chromosomes()))
else:
self.parent_selection_impl(self)
next_population = self.crossover_impl(self)
next_population = self.survivor_selection_impl(self, next_population)
next_population.set_all_chromosomes(self.mutation_impl(self, next_population.get_all_chromosomes()))
self.population = next_population
self.set_all_fitness(self.population.chromosome_list)
self.population.set_all_chromosomes(self.sort_by_best_fitness(self.population.get_all_chromosomes()))
number_of_generations -= 1
self.current_generation += 1
def evolve(self):
"""Runs the ga until the termination point has been satisfied."""
# While the termination point hasnt been reached keep running
while(self.active()):
self.evolve_generation()
def active(self):
"""Returns if the ga should terminate base on the termination implimented"""
# Send termination_impl the whole ga class
return self.termination_impl(self)
def initialize_population(self):
"""Initialize the population using the initialization
implimentation that is currently set"""
self.population = self.initialization_impl(self)
def set_all_fitness(self,chromosome_set):
"""Will get and set the fitness of each chromosome in the population.
If update_fitness is set then all fitness values are updated.
Otherwise only fitness values set to None (i.e. uninitialized
fitness values) are updated."""
# Get each chromosome in the population
for chromosome in chromosome_set:
if(chromosome.fitness == None or self.update_fitness == True):
# Set the chromosomes fitness using the fitness function
chromosome.set_fitness(self.fitness_function_impl(chromosome))
def sort_by_best_fitness(self, chromosome_set):
chromosome_set_temp = chromosome_set
not_sorted_check = 0
while (not_sorted_check != len(chromosome_set_temp)):
not_sorted_check = 0
for i in range(len(chromosome_set_temp)):
if ((i + 1 < len(chromosome_set_temp)) and (chromosome_set_temp[i + 1].fitness > chromosome_set_temp[i].fitness)):
chromosome_set[i], chromosome_set_temp[i + 1] = chromosome_set_temp[i + 1], chromosome_set[i]
else:
not_sorted_check += 1
chromosome_set = chromosome_set_temp
return chromosome_set
def make_gene(self,value):
"""Let's the user create a gene."""
return create_gene(value)
def make_chromosome(self):
"""Let's the user create a chromosome."""
return create_chromosome()
def make_population(self):
"""Let's the user create a population."""
return create_population()