Files
EasyGA/attributes.py

434 lines
13 KiB
Python

# Import signature tool to check if functions start with self or ga
from inspect import signature
# Import math for square root (ga.dist()) and ceil (crossover methods)
import math
import random
import sqlite3
from copy import deepcopy
# Import all the data structure prebuilt modules
from structure import Population as make_population
from structure import Chromosome as make_chromosome
from structure import Gene as make_gene
# Misc. Methods
from examples import Fitness_Examples
from termination import Termination
# Parent/Survivor Selection Methods
from parent import Parent
from survivor import Survivor
# Genetic Operator Methods
from crossover import Crossover
from mutation import Mutation
# Database class
from database import sql_database
from sqlite3 import Error
# Graphing package
from database import matplotlib_graph
import matplotlib.pyplot as plt
class Attributes:
"""Default GA attributes can be found here. If any attributes have not
been set then they will fall back onto the default attribute. All
attributes have been catigorized to explain sections in the ga process."""
#=====================#
# Default GA methods: #
#=====================#
# Default EasyGA implimentation structure
fitness_function_impl = Fitness_Examples.is_it_5
make_population = make_population
make_chromosome = make_chromosome
make_gene = make_gene
# Methods for accomplishing Parent-Selection -> Crossover -> Survivor_Selection -> Mutation -> Termination
parent_selection_impl = Parent.Rank.tournament
crossover_individual_impl = Crossover.Individual.single_point
crossover_population_impl = Crossover.Population.sequential
survivor_selection_impl = Survivor.fill_in_best
mutation_individual_impl = Mutation.Individual.individual_genes
mutation_population_impl = Mutation.Population.random_avoid_best
termination_impl = Termination.fitness_generation_tolerance
def dist(self, chromosome_1, chromosome_2):
"""Default distance lambda. Returns the square root of the difference in fitnesses."""
return math.sqrt(abs(chromosome_1.fitness - chromosome_2.fitness))
def weighted_random(self, weight):
"""Returns a random value between 0 and 1. Returns values between the weight and the
nearest of 0 and 1 less frequently than between weight and the farthest of 0 and 1."""
rand_num = random.random()
if rand_num < weight:
return (1-weight) * rand_num / weight
else:
return 1 - weight * (1-rand_num) / (1-weight)
def gene_impl(self, *args, **kwargs):
"""Default gene implementation. Returns a random integer from 1 to 10."""
return random.randint(1, 10)
chromosome_impl = None
#=====================================#
# Special built-in class __methods__: #
#=====================================#
def __init__(
self,
*,
# Attributes must be passed in using kwargs
run = 0,
chromosome_length = 10,
population_size = 10,
population = None,
target_fitness_type = 'max',
update_fitness = False,
parent_ratio = 0.10,
selection_probability = 0.50,
tournament_size_ratio = 0.10,
current_generation = 0,
current_fitness = 0,
generation_goal = 100,
fitness_goal = None,
tolerance_goal = None,
percent_converged = 0.50,
chromosome_mutation_rate = 0.15,
gene_mutation_rate = 0.05,
adapt_rate = 0.05,
adapt_probability_rate = 0.05,
adapt_population_flag = True,
max_selection_probability = 0.75,
min_selection_probability = 0.25,
max_chromosome_mutation_rate = None,
min_chromosome_mutation_rate = None,
max_gene_mutation_rate = 0.15,
min_gene_mutation_rate = 0.01,
Database = sql_database.SQL_Database,
database_name = 'database.db',
sql_create_data_structure = f"""
CREATE TABLE IF NOT EXISTS data (
id INTEGER PRIMARY KEY,
config_id INTEGER DEFAULT NULL,
generation INTEGER NOT NULL,
fitness REAL,
chromosome TEXT
); """,
Graph = matplotlib_graph.Matplotlib_Graph,
**kwargs
):
# Keep track of the current run
self.run = run
# Initilization variables
self.chromosome_length = chromosome_length
self.population_size = population_size
self.population = population
self.target_fitness_type = target_fitness_type
self.update_fitness = update_fitness
# Selection variables
self.parent_ratio = parent_ratio
self.selection_probability = selection_probability
self.tournament_size_ratio = tournament_size_ratio
# Termination variables
self.current_generation = current_generation
self.current_fitness = current_fitness
self.generation_goal = generation_goal
self.fitness_goal = fitness_goal
self.tolerance_goal = tolerance_goal
self.percent_converged = percent_converged
# Mutation variables
self.chromosome_mutation_rate = chromosome_mutation_rate
self.gene_mutation_rate = gene_mutation_rate
# Adapt variables
self.adapt_rate = adapt_rate
self.adapt_probability_rate = adapt_probability_rate
self.adapt_population_flag = adapt_population_flag
# Bounds on probabilities when adapting
self.max_selection_probability = max_selection_probability
self.min_selection_probability = min_selection_probability
self.max_chromosome_mutation_rate = max_chromosome_mutation_rate
self.min_chromosome_mutation_rate = min_chromosome_mutation_rate
self.max_gene_mutation_rate = max_gene_mutation_rate
self.min_gene_mutation_rate = min_gene_mutation_rate
# Database varibles
self.database = Database()
self.database_name = database_name
self.sql_create_data_structure = sql_create_data_structure
# Graphing variables
self.graph = Graph(self.database)
# Any other custom kwargs?
for name, value in kwargs.items():
self.__setattr__(name, value)
def __setattr__(self, name, value):
"""Custom setter for using
self.name = value
which follows the following guidelines:
- if self.name is a property, the specific property setter is used
- else if value is callable and the first parameter is either 'self' or 'ga', self is passed in as the first parameter
- else if value is not None or self.name is not set, assign it like normal
"""
# Check for property
if hasattr(type(self), name) and isinstance(getattr(type(self), name), property):
getattr(type(self), name).fset(self, value)
# Check for function
elif callable(value) and next(iter(signature(value).parameters), None) in ('self', 'ga'):
foo = lambda *args, **kwargs: value(self, *args, **kwargs)
# Reassign name and doc-string for documentation
foo.__name__ = value.__name__
foo.__doc__ = value.__doc__
self.__dict__[name] = foo
# Assign like normal unless None or undefined self.name
elif value is not None or not hasattr(self, name):
self.__dict__[name] = value
#============================#
# Built-in database methods: #
#============================#
def save_population(self):
"""Saves the current population to the database."""
self.database.insert_current_population(self)
def save_chromosome(self, chromosome):
"""Saves the given chromosome to the database."""
self.database.insert_current_chromosome(self.current_generation, chromosome)
#===================#
# Built-in options: #
#===================#
def numeric_chromosomes(self):
"""Sets default numerical based methods"""
# Adapt every 10th generation
self.adapt_rate = 0.10
# Use averaging for crossover
self.crossover_individual_impl = Crossover.Individual.Arithmetic.average
# Use averaging for mutation
self.mutation_individual_impl = Mutation.Individual.individual_genes
# Euclidean norm
self.dist = lambda self, chromosome_1, chromosome_2:\
math.sqrt(sum(
(gene_1.value - gene_2.value) ** 2
for gene_1, gene_2
in zip(chromosome_1, chromosome_2)
))
def permutation_chromosomes(self, cycle = True):
"""Sets default permutation based methods"""
cycle = int(cycle)
self.crossover_individual_impl = Crossover.Individual.Permutation.ox1
self.mutation_individual_impl = Mutation.Individual.Permutation.swap_genes
def dist(self, chromosome_1, chromosome_2):
"""Count the number of gene pairs they don't have in common."""
return sum(
1
for x, y
in zip(chromosome_1, chromosome_2)
if x != y
)
self.dist = dist
#===========================#
# Getter/setter properties: #
#===========================#
@property
def run(self):
"""Getter function for the run counter."""
return self._run
@run.setter
def run(self, value):
"""Setter function for the run counter."""
if not(isinstance(value, int) and value >= 0):
raise ValueError("ga.run counter must be an integer greater than or equal to 0.")
self._run = value
@property
def current_generation(self):
"""Getter function for the current generation."""
return self._current_generation
@current_generation.setter
def current_generation(self, generation):
"""Setter function for the current generation."""
if not isinstance(generation, int) or generation < 0:
raise ValueError("ga.current_generation must be an integer greater than or equal to 0")
self._current_generation = generation
@property
def chromosome_length(self):
"""Getter function for chromosome length"""
return self._chromosome_length
@chromosome_length.setter
def chromosome_length(self, length):
"""Setter function with error checking for chromosome length"""
if(not isinstance(length, int) or length <= 0):
raise ValueError("Chromosome length must be integer greater than 0")
self._chromosome_length = length
@property
def population_size(self):
"""Getter function for population size"""
return self._population_size
@population_size.setter
def population_size(self, size):
"""Setter function with error checking for population size"""
if(not isinstance(size, int) or size <= 0):
raise ValueError("Population size must be integer greater than 0")
self._population_size = size
@property
def target_fitness_type(self):
"""Getter function for target fitness type."""
return self._target_fitness_type
@target_fitness_type.setter
def target_fitness_type(self, target_fitness_type):
"""Setter function for target fitness type."""
self._target_fitness_type = target_fitness_type
@property
def max_chromosome_mutation_rate(self):
"""Getter function for max chromosome mutation rate"""
return self._max_chromosome_mutation_rate
@max_chromosome_mutation_rate.setter
def max_chromosome_mutation_rate(self, rate):
"""Setter function with error checking and default value for max chromosome mutation rate"""
# Default value
if rate is None:
self._max_chromosome_mutation_rate = min(self.chromosome_mutation_rate*2, (1+self.chromosome_mutation_rate)/2)
# Otherwise check value
elif 0 <= rate <= 1:
self._max_chromosome_mutation_rate = rate
# Throw error
else:
raise ValueError("Max chromosome mutation rate must be between 0 and 1")
@property
def min_chromosome_mutation_rate(self):
"""Getter function for min chromosome mutation rate"""
return self._min_chromosome_mutation_rate
@min_chromosome_mutation_rate.setter
def min_chromosome_mutation_rate(self, rate):
"""Setter function with error checking and default value for min chromosome mutation rate"""
# Default value
if rate is None:
self._min_chromosome_mutation_rate = self.chromosome_mutation_rate/2
# Otherwise check value
elif 0 <= rate <= 1:
self._min_chromosome_mutation_rate = rate
# Throw error
else:
raise ValueError("Min chromosome mutation rate must be between 0 and 1")
@property
def database_name(self):
"""Getter function for the database name"""
return self._database_name
@database_name.setter
def database_name(self, value_input):
"""Setter function with error checking for the database name"""
# Update the database class of the name change
self.database._database_name = value_input
# Set the name in the ga attribute
self._database_name = value_input