91 lines
3.1 KiB
Python
91 lines
3.1 KiB
Python
import random
|
|
|
|
# Import all the data structure prebuilt modules
|
|
from structure import Population as create_population
|
|
from structure import Chromosome as create_chromosome
|
|
from structure import Gene as create_gene
|
|
|
|
# Structure Methods
|
|
from fitness_function import Fitness_Examples
|
|
from initialization import Initialization_Methods
|
|
from termination_point import Termination_Methods
|
|
|
|
# Parent/Survivor Selection Methods
|
|
from parent_selection import Parent_Selection
|
|
from survivor_selection import Survivor_Selection
|
|
|
|
# Genetic Operator Methods
|
|
from mutation import Mutation_Methods
|
|
from crossover import Crossover_Methods
|
|
|
|
class attributes:
|
|
"""SAMPLE TEXT"""
|
|
|
|
def __init__(self):
|
|
"""Initialize the GA."""
|
|
|
|
# Initilization variables
|
|
self.chromosome_length = 10
|
|
self.population_size = 10
|
|
self.chromosome_impl = None
|
|
self.gene_impl = lambda: random.randint(1, 10)
|
|
self.population = None
|
|
self.target_fitness_type = 'max'
|
|
self.update_fitness = True
|
|
|
|
# Selection variables
|
|
self.parent_ratio = 0.1
|
|
self.selection_probability = 0.75
|
|
self.tournament_size_ratio = 0.1
|
|
|
|
# Termination variables
|
|
self.current_generation = 0
|
|
self.current_fitness = 0
|
|
self.generation_goal = 15
|
|
self.fitness_goal = None
|
|
|
|
# Mutation variables
|
|
self.mutation_rate = 0.10
|
|
|
|
# Default EasyGA implimentation structure
|
|
self.initialization_impl = Initialization_Methods.random_initialization
|
|
self.fitness_function_impl = Fitness_Examples.is_it_5
|
|
self.make_population = create_population
|
|
self.make_chromosome = create_chromosome
|
|
self.make_gene = create_gene
|
|
|
|
# Methods for accomplishing Parent-Selection -> Crossover -> Survivor_Selection -> Mutation
|
|
self.parent_selection_impl = Parent_Selection.Rank.tournament
|
|
self.crossover_individual_impl = Crossover_Methods.Individual.single_point
|
|
self.crossover_population_impl = Crossover_Methods.Population.sequential_selection
|
|
self.survivor_selection_impl = Survivor_Selection.fill_in_best
|
|
self.mutation_individual_impl = Mutation_Methods.Individual.single_gene
|
|
self.mutation_population_impl = Mutation_Methods.Population.random_selection
|
|
|
|
# The type of termination to impliment
|
|
self.termination_impl = Termination_Methods.fitness_and_generation_based
|
|
|
|
|
|
# Getter and setters for all varibles
|
|
@property
|
|
def chromosome_length(self):
|
|
"""SAMPLE TEXT"""
|
|
return self._chromosome_length
|
|
|
|
@chromosome_length.setter
|
|
def chromosome_length(self, value_input):
|
|
if(value_input == 0):
|
|
raise ValueError("Chromosome length must be greater then 0")
|
|
self._chromosome_length = value_input
|
|
|
|
|
|
@property
|
|
def population_size(self):
|
|
return self._population_size
|
|
|
|
@population_size.setter
|
|
def population_size(self, value_input):
|
|
if(value_input == 0):
|
|
raise ValueError("Population length must be greater then 0")
|
|
self._population_size = value_input
|