434 lines
13 KiB
Python
434 lines
13 KiB
Python
# Import signature tool to check if functions start with self or ga
|
|
from inspect import signature
|
|
|
|
# Import math for square root (ga.dist()) and ceil (crossover methods)
|
|
import math
|
|
|
|
import random
|
|
import sqlite3
|
|
from copy import deepcopy
|
|
|
|
# Import all the data structure prebuilt modules
|
|
from structure import Population as make_population
|
|
from structure import Chromosome as make_chromosome
|
|
from structure import Gene as make_gene
|
|
|
|
# Misc. Methods
|
|
from examples import Fitness_Examples
|
|
from termination import Termination
|
|
|
|
# Parent/Survivor Selection Methods
|
|
from parent import Parent
|
|
from survivor import Survivor
|
|
|
|
# Genetic Operator Methods
|
|
from crossover import Crossover
|
|
from mutation import Mutation
|
|
|
|
# Database class
|
|
from database import sql_database
|
|
from sqlite3 import Error
|
|
|
|
# Graphing package
|
|
from database import matplotlib_graph
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
class Attributes:
|
|
"""Default GA attributes can be found here. If any attributes have not
|
|
been set then they will fall back onto the default attribute. All
|
|
attributes have been catigorized to explain sections in the ga process."""
|
|
|
|
#=====================#
|
|
# Default GA methods: #
|
|
#=====================#
|
|
|
|
# Default EasyGA implimentation structure
|
|
fitness_function_impl = Fitness_Examples.is_it_5
|
|
make_population = make_population
|
|
make_chromosome = make_chromosome
|
|
make_gene = make_gene
|
|
|
|
# Methods for accomplishing Parent-Selection -> Crossover -> Survivor_Selection -> Mutation -> Termination
|
|
parent_selection_impl = Parent.Rank.tournament
|
|
crossover_individual_impl = Crossover.Individual.single_point
|
|
crossover_population_impl = Crossover.Population.sequential
|
|
survivor_selection_impl = Survivor.fill_in_best
|
|
mutation_individual_impl = Mutation.Individual.individual_genes
|
|
mutation_population_impl = Mutation.Population.random_avoid_best
|
|
termination_impl = Termination.fitness_generation_tolerance
|
|
|
|
|
|
def dist(self, chromosome_1, chromosome_2):
|
|
"""Default distance lambda. Returns the square root of the difference in fitnesses."""
|
|
return math.sqrt(abs(chromosome_1.fitness - chromosome_2.fitness))
|
|
|
|
|
|
def weighted_random(self, weight):
|
|
"""Returns a random value between 0 and 1. Returns values between the weight and the
|
|
nearest of 0 and 1 less frequently than between weight and the farthest of 0 and 1."""
|
|
|
|
rand_num = random.random()
|
|
if rand_num < weight:
|
|
return (1-weight) * rand_num / weight
|
|
else:
|
|
return 1 - weight * (1-rand_num) / (1-weight)
|
|
|
|
|
|
def gene_impl(self, *args, **kwargs):
|
|
"""Default gene implementation. Returns a random integer from 1 to 10."""
|
|
return random.randint(1, 10)
|
|
|
|
|
|
chromosome_impl = None
|
|
|
|
|
|
#=====================================#
|
|
# Special built-in class __methods__: #
|
|
#=====================================#
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
# Attributes must be passed in using kwargs
|
|
|
|
run = 0,
|
|
|
|
chromosome_length = 10,
|
|
population_size = 10,
|
|
population = None,
|
|
target_fitness_type = 'max',
|
|
update_fitness = False,
|
|
|
|
parent_ratio = 0.10,
|
|
selection_probability = 0.50,
|
|
tournament_size_ratio = 0.10,
|
|
|
|
current_generation = 0,
|
|
current_fitness = 0,
|
|
|
|
generation_goal = 100,
|
|
fitness_goal = None,
|
|
tolerance_goal = None,
|
|
percent_converged = 0.50,
|
|
|
|
chromosome_mutation_rate = 0.15,
|
|
gene_mutation_rate = 0.05,
|
|
|
|
adapt_rate = 0.05,
|
|
adapt_probability_rate = 0.05,
|
|
adapt_population_flag = True,
|
|
|
|
max_selection_probability = 0.75,
|
|
min_selection_probability = 0.25,
|
|
max_chromosome_mutation_rate = None,
|
|
min_chromosome_mutation_rate = None,
|
|
max_gene_mutation_rate = 0.15,
|
|
min_gene_mutation_rate = 0.01,
|
|
|
|
Database = sql_database.SQL_Database,
|
|
database_name = 'database.db',
|
|
sql_create_data_structure = f"""
|
|
CREATE TABLE IF NOT EXISTS data (
|
|
id INTEGER PRIMARY KEY,
|
|
config_id INTEGER DEFAULT NULL,
|
|
generation INTEGER NOT NULL,
|
|
fitness REAL,
|
|
chromosome TEXT
|
|
); """,
|
|
|
|
Graph = matplotlib_graph.Matplotlib_Graph,
|
|
|
|
**kwargs
|
|
):
|
|
|
|
# Keep track of the current run
|
|
self.run = run
|
|
|
|
# Initilization variables
|
|
self.chromosome_length = chromosome_length
|
|
self.population_size = population_size
|
|
self.population = population
|
|
self.target_fitness_type = target_fitness_type
|
|
self.update_fitness = update_fitness
|
|
|
|
# Selection variables
|
|
self.parent_ratio = parent_ratio
|
|
self.selection_probability = selection_probability
|
|
self.tournament_size_ratio = tournament_size_ratio
|
|
|
|
# Termination variables
|
|
self.current_generation = current_generation
|
|
self.current_fitness = current_fitness
|
|
self.generation_goal = generation_goal
|
|
self.fitness_goal = fitness_goal
|
|
self.tolerance_goal = tolerance_goal
|
|
self.percent_converged = percent_converged
|
|
|
|
# Mutation variables
|
|
self.chromosome_mutation_rate = chromosome_mutation_rate
|
|
self.gene_mutation_rate = gene_mutation_rate
|
|
|
|
# Adapt variables
|
|
self.adapt_rate = adapt_rate
|
|
self.adapt_probability_rate = adapt_probability_rate
|
|
self.adapt_population_flag = adapt_population_flag
|
|
|
|
# Bounds on probabilities when adapting
|
|
self.max_selection_probability = max_selection_probability
|
|
self.min_selection_probability = min_selection_probability
|
|
self.max_chromosome_mutation_rate = max_chromosome_mutation_rate
|
|
self.min_chromosome_mutation_rate = min_chromosome_mutation_rate
|
|
self.max_gene_mutation_rate = max_gene_mutation_rate
|
|
self.min_gene_mutation_rate = min_gene_mutation_rate
|
|
|
|
# Database varibles
|
|
self.database = Database()
|
|
self.database_name = database_name
|
|
self.sql_create_data_structure = sql_create_data_structure
|
|
|
|
# Graphing variables
|
|
self.graph = Graph(self.database)
|
|
|
|
# Any other custom kwargs?
|
|
for name, value in kwargs.items():
|
|
self.__setattr__(name, value)
|
|
|
|
|
|
def __setattr__(self, name, value):
|
|
"""Custom setter for using
|
|
|
|
self.name = value
|
|
|
|
which follows the following guidelines:
|
|
- if self.name is a property, the specific property setter is used
|
|
- else if value is callable and the first parameter is either 'self' or 'ga', self is passed in as the first parameter
|
|
- else if value is not None or self.name is not set, assign it like normal
|
|
"""
|
|
|
|
# Check for property
|
|
if hasattr(type(self), name) and isinstance(getattr(type(self), name), property):
|
|
getattr(type(self), name).fset(self, value)
|
|
|
|
# Check for function
|
|
elif callable(value) and next(iter(signature(value).parameters), None) in ('self', 'ga'):
|
|
foo = lambda *args, **kwargs: value(self, *args, **kwargs)
|
|
# Reassign name and doc-string for documentation
|
|
foo.__name__ = value.__name__
|
|
foo.__doc__ = value.__doc__
|
|
self.__dict__[name] = foo
|
|
|
|
# Assign like normal unless None or undefined self.name
|
|
elif value is not None or not hasattr(self, name):
|
|
self.__dict__[name] = value
|
|
|
|
|
|
#============================#
|
|
# Built-in database methods: #
|
|
#============================#
|
|
|
|
|
|
def save_population(self):
|
|
"""Saves the current population to the database."""
|
|
self.database.insert_current_population(self)
|
|
|
|
|
|
def save_chromosome(self, chromosome):
|
|
"""Saves the given chromosome to the database."""
|
|
self.database.insert_current_chromosome(self.current_generation, chromosome)
|
|
|
|
|
|
#===================#
|
|
# Built-in options: #
|
|
#===================#
|
|
|
|
|
|
def numeric_chromosomes(self):
|
|
"""Sets default numerical based methods"""
|
|
|
|
# Adapt every 10th generation
|
|
self.adapt_rate = 0.10
|
|
|
|
# Use averaging for crossover
|
|
self.crossover_individual_impl = Crossover.Individual.Arithmetic.average
|
|
|
|
# Use averaging for mutation
|
|
self.mutation_individual_impl = Mutation.Individual.individual_genes
|
|
|
|
# Euclidean norm
|
|
self.dist = lambda self, chromosome_1, chromosome_2:\
|
|
math.sqrt(sum(
|
|
(gene_1.value - gene_2.value) ** 2
|
|
for gene_1, gene_2
|
|
in zip(chromosome_1, chromosome_2)
|
|
))
|
|
|
|
|
|
def permutation_chromosomes(self, cycle = True):
|
|
"""Sets default permutation based methods"""
|
|
|
|
cycle = int(cycle)
|
|
|
|
self.crossover_individual_impl = Crossover.Individual.Permutation.ox1
|
|
self.mutation_individual_impl = Mutation.Individual.Permutation.swap_genes
|
|
|
|
def dist(self, chromosome_1, chromosome_2):
|
|
"""Count the number of gene pairs they don't have in common."""
|
|
|
|
return sum(
|
|
1
|
|
for x, y
|
|
in zip(chromosome_1, chromosome_2)
|
|
if x != y
|
|
)
|
|
|
|
self.dist = dist
|
|
|
|
|
|
#===========================#
|
|
# Getter/setter properties: #
|
|
#===========================#
|
|
|
|
|
|
@property
|
|
def run(self):
|
|
"""Getter function for the run counter."""
|
|
return self._run
|
|
|
|
|
|
@run.setter
|
|
def run(self, value):
|
|
"""Setter function for the run counter."""
|
|
if not(isinstance(value, int) and value >= 0):
|
|
raise ValueError("ga.run counter must be an integer greater than or equal to 0.")
|
|
self._run = value
|
|
|
|
|
|
@property
|
|
def current_generation(self):
|
|
"""Getter function for the current generation."""
|
|
return self._current_generation
|
|
|
|
|
|
@current_generation.setter
|
|
def current_generation(self, generation):
|
|
"""Setter function for the current generation."""
|
|
|
|
if not isinstance(generation, int) or generation < 0:
|
|
raise ValueError("ga.current_generation must be an integer greater than or equal to 0")
|
|
|
|
self._current_generation = generation
|
|
|
|
|
|
@property
|
|
def chromosome_length(self):
|
|
"""Getter function for chromosome length"""
|
|
return self._chromosome_length
|
|
|
|
|
|
@chromosome_length.setter
|
|
def chromosome_length(self, length):
|
|
"""Setter function with error checking for chromosome length"""
|
|
|
|
if(not isinstance(length, int) or length <= 0):
|
|
raise ValueError("Chromosome length must be integer greater than 0")
|
|
|
|
self._chromosome_length = length
|
|
|
|
|
|
@property
|
|
def population_size(self):
|
|
"""Getter function for population size"""
|
|
|
|
return self._population_size
|
|
|
|
|
|
@population_size.setter
|
|
def population_size(self, size):
|
|
"""Setter function with error checking for population size"""
|
|
|
|
if(not isinstance(size, int) or size <= 0):
|
|
raise ValueError("Population size must be integer greater than 0")
|
|
|
|
self._population_size = size
|
|
|
|
|
|
@property
|
|
def target_fitness_type(self):
|
|
"""Getter function for target fitness type."""
|
|
|
|
return self._target_fitness_type
|
|
|
|
|
|
@target_fitness_type.setter
|
|
def target_fitness_type(self, target_fitness_type):
|
|
"""Setter function for target fitness type."""
|
|
|
|
self._target_fitness_type = target_fitness_type
|
|
|
|
|
|
@property
|
|
def max_chromosome_mutation_rate(self):
|
|
"""Getter function for max chromosome mutation rate"""
|
|
|
|
return self._max_chromosome_mutation_rate
|
|
|
|
|
|
@max_chromosome_mutation_rate.setter
|
|
def max_chromosome_mutation_rate(self, rate):
|
|
"""Setter function with error checking and default value for max chromosome mutation rate"""
|
|
|
|
# Default value
|
|
if rate is None:
|
|
self._max_chromosome_mutation_rate = min(self.chromosome_mutation_rate*2, (1+self.chromosome_mutation_rate)/2)
|
|
|
|
# Otherwise check value
|
|
elif 0 <= rate <= 1:
|
|
self._max_chromosome_mutation_rate = rate
|
|
|
|
# Throw error
|
|
else:
|
|
raise ValueError("Max chromosome mutation rate must be between 0 and 1")
|
|
|
|
|
|
@property
|
|
def min_chromosome_mutation_rate(self):
|
|
"""Getter function for min chromosome mutation rate"""
|
|
|
|
return self._min_chromosome_mutation_rate
|
|
|
|
|
|
@min_chromosome_mutation_rate.setter
|
|
def min_chromosome_mutation_rate(self, rate):
|
|
"""Setter function with error checking and default value for min chromosome mutation rate"""
|
|
|
|
# Default value
|
|
if rate is None:
|
|
self._min_chromosome_mutation_rate = self.chromosome_mutation_rate/2
|
|
|
|
# Otherwise check value
|
|
elif 0 <= rate <= 1:
|
|
self._min_chromosome_mutation_rate = rate
|
|
|
|
# Throw error
|
|
else:
|
|
raise ValueError("Min chromosome mutation rate must be between 0 and 1")
|
|
|
|
|
|
@property
|
|
def database_name(self):
|
|
"""Getter function for the database name"""
|
|
|
|
return self._database_name
|
|
|
|
|
|
@database_name.setter
|
|
def database_name(self, value_input):
|
|
"""Setter function with error checking for the database name"""
|
|
|
|
# Update the database class of the name change
|
|
self.database._database_name = value_input
|
|
|
|
# Set the name in the ga attribute
|
|
self._database_name = value_input
|