Files
bonobo/bonobo/structs/graphs.py
2017-07-06 11:29:55 +02:00

129 lines
4.1 KiB
Python

from copy import copy
from bonobo.constants import BEGIN
class Graph:
"""
Represents a directed graph of nodes.
"""
def __init__(self, *chain):
self.edges = {BEGIN: set()}
self.named = {}
self.nodes = []
self.add_chain(*chain)
def __iter__(self):
yield from self.nodes
def __len__(self):
""" Node count.
"""
return len(self.nodes)
def __getitem__(self, key):
return self.nodes[key]
def outputs_of(self, idx, create=False):
""" Get a set of the outputs for a given node index.
"""
if create and not idx in self.edges:
self.edges[idx] = set()
return self.edges[idx]
def add_node(self, c):
""" Add a node without connections in this graph and returns its index.
"""
idx = len(self.nodes)
self.edges[idx] = set()
self.nodes.append(c)
return idx
def add_chain(self, *nodes, _input=BEGIN, _output=None, _name=None):
""" Add a chain in this graph.
"""
if len(nodes):
_input = self._resolve_index(_input)
_output = self._resolve_index(_output)
for i, node in enumerate(nodes):
_next = self.add_node(node)
if not i and _name:
if _name in self.named:
raise KeyError('Duplicate name {!r} in graph.'.format(_name))
self.named[_name] = _next
self.outputs_of(_input, create=True).add(_next)
_input = _next
if _output is not None:
self.outputs_of(_input, create=True).add(_output)
if hasattr(self, '_topologcally_sorted_indexes_cache'):
del self._topologcally_sorted_indexes_cache
return self
def copy(self):
g = Graph()
g.edges = copy(self.edges)
g.named = copy(self.named)
g.nodes = copy(self.nodes)
return g
@property
def topologically_sorted_indexes(self):
"""Iterate in topological order, based on networkx's topological_sort() function.
"""
try:
return self._topologcally_sorted_indexes_cache
except AttributeError:
seen = set()
order = []
explored = set()
for i in self.edges:
if i in explored:
continue
fringe = [i]
while fringe:
w = fringe[-1] # depth first search
if w in explored: # already looked down this branch
fringe.pop()
continue
seen.add(w) # mark as seen
# Check successors for cycles and for new nodes
new_nodes = []
for n in self.outputs_of(w):
if n not in explored:
if n in seen: # CYCLE !!
raise RuntimeError("Graph contains a cycle.")
new_nodes.append(n)
if new_nodes: # Add new_nodes to fringe
fringe.extend(new_nodes)
else: # No new nodes so w is fully explored
explored.add(w)
order.append(w)
fringe.pop() # done considering this node
self._topologcally_sorted_indexes_cache = tuple(filter(lambda i: type(i) is int, reversed(order)))
return self._topologcally_sorted_indexes_cache
def _resolve_index(self, mixed):
""" Find the index based on various strategies for a node, probably an input or output of chain. Supported inputs are indexes, node values or names.
"""
if mixed is None:
return None
if type(mixed) is int or mixed in self.edges:
return mixed
if isinstance(mixed, str) and mixed in self.named:
return self.named[mixed]
if mixed in self.nodes:
return self.nodes.index(mixed)
raise ValueError('Cannot find node matching {!r}.'.format(mixed))