Added decorator for repetitive code and modified for multiple children per crossover
This commit is contained in:
@ -39,11 +39,39 @@ def _check_weight(individual_method):
|
||||
return new_method
|
||||
|
||||
|
||||
@function_info
|
||||
def _gene_by_gene(individual_method):
|
||||
"""Perform crossover by making a single new chromosome
|
||||
by combining each gene by gene.
|
||||
"""
|
||||
|
||||
def new_method(ga, parent_1, parent_2, *, weight = individual_method.__kwdefaults__.get('weight', None)):
|
||||
|
||||
# Without any weight
|
||||
if weight is None:
|
||||
yield (
|
||||
individual_method(ga, value_1, value_2)
|
||||
for value_1, value_2
|
||||
in zip(parent_1.gene_value_iter, parent_2.gene_value_iter)
|
||||
)
|
||||
|
||||
# With a weight
|
||||
else:
|
||||
yield (
|
||||
individual_method(ga, value_1, value_2, weight = weight)
|
||||
for value_1, value_2
|
||||
in zip(parent_1.gene_value_iter, parent_2.gene_value_iter)
|
||||
)
|
||||
|
||||
return new_method
|
||||
|
||||
|
||||
class Crossover_Methods:
|
||||
|
||||
# Allowing access to decorators when importing class
|
||||
_append_to_next_population = _append_to_next_population
|
||||
_check_weight = _check_weight
|
||||
_check_weight = _check_weight
|
||||
_gene_by_gene = _gene_by_gene
|
||||
|
||||
|
||||
class Population:
|
||||
@ -57,10 +85,10 @@ class Crossover_Methods:
|
||||
The first parent is paired with the last parent.
|
||||
"""
|
||||
|
||||
for index in range(len(mating_pool)): # for each parent in the mating pool
|
||||
yield ga.crossover_individual_impl( # apply crossover to
|
||||
mating_pool[index], # the parent and
|
||||
mating_pool[index-1], # the previous parent
|
||||
for index in range(len(mating_pool)): # for each parent in the mating pool
|
||||
yield from ga.crossover_individual_impl( # apply crossover to
|
||||
mating_pool[index], # the parent and
|
||||
mating_pool[index-1], # the previous parent
|
||||
)
|
||||
|
||||
|
||||
@ -70,10 +98,10 @@ class Crossover_Methods:
|
||||
Every parent is paired with a random parent.
|
||||
"""
|
||||
|
||||
for parent in mating_pool: # for each parent in the mating pool
|
||||
yield ga.crossover_individual_impl( # apply crossover to
|
||||
parent, # the parent and
|
||||
random.choice(mating_pool), # a random parent
|
||||
for parent in mating_pool: # for each parent in the mating pool
|
||||
yield from ga.crossover_individual_impl( # apply crossover to
|
||||
parent, # the parent and
|
||||
random.choice(mating_pool), # a random parent
|
||||
)
|
||||
|
||||
|
||||
@ -90,11 +118,8 @@ class Crossover_Methods:
|
||||
# Weighted random integer from 0 to minimum parent length - 1
|
||||
swap_index = int(ga.weighted_random(weight) * minimum_parent_length)
|
||||
|
||||
# Randomly choose which parent's genes are selected first.
|
||||
if random.choice([True, False]):
|
||||
return parent_1[:swap_index] + parent_2[swap_index:]
|
||||
else:
|
||||
return parent_2[:-swap_index] + parent_1[-swap_index:]
|
||||
yield parent_1[:swap_index] + parent_2[swap_index:]
|
||||
yield parent_2[:swap_index] + parent_1[swap_index:]
|
||||
|
||||
|
||||
@_check_weight
|
||||
@ -104,67 +129,52 @@ class Crossover_Methods:
|
||||
|
||||
|
||||
@_check_weight
|
||||
def uniform(ga, parent_1, parent_2, *, weight = 0.5):
|
||||
@_gene_by_gene
|
||||
def uniform(ga, value_1, value_2, *, weight = 0.5):
|
||||
"""Cross two parents by swapping all genes randomly."""
|
||||
|
||||
for gene_pair in zip(parent_1, parent_2):
|
||||
yield random.choices(gene_pair, cum_weights = [weight, 1])[0]
|
||||
return random.choices(gene_pair, cum_weights = [weight, 1])[0]
|
||||
|
||||
|
||||
class Arithmetic:
|
||||
"""Crossover methods for numerical genes."""
|
||||
|
||||
def average(ga, parent_1, parent_2, *, weight = 0.5):
|
||||
@_gene_by_gene
|
||||
def average(ga, value_1, value_2, *, weight = 0.5):
|
||||
"""Cross two parents by taking the average of the genes."""
|
||||
|
||||
values_1 = parent_1.gene_value_iter
|
||||
values_2 = parent_2.gene_value_iter
|
||||
average_value = weight*value_1 + (1-weight)*value_2
|
||||
|
||||
for value_1, value_2 in zip(values_1, values_2):
|
||||
if type(value_1) == type(value_2) == int:
|
||||
average_value = randround(value)
|
||||
|
||||
value = weight*value_1 + (1-weight)*value_2
|
||||
|
||||
if type(value_1) == type(value_2) == int:
|
||||
value = randround(value)
|
||||
|
||||
yield value
|
||||
return average_value
|
||||
|
||||
|
||||
def extrapolate(ga, parent_1, parent_2, *, weight = 0.5):
|
||||
|
||||
@_gene_by_gene
|
||||
def extrapolate(ga, value_1, value_2, *, weight = 0.5):
|
||||
"""Cross two parents by extrapolating towards the first parent.
|
||||
May result in gene values outside the expected domain.
|
||||
"""
|
||||
|
||||
values_1 = parent_1.gene_value_iter
|
||||
values_2 = parent_2.gene_value_iter
|
||||
extrapolated_value = weight*value_1 + (1-weight)*value_2
|
||||
|
||||
for value_1, value_2 in zip(values_1, values_2):
|
||||
if type(value_1) == type(value_2) == int:
|
||||
extrapolated_value = randround(value)
|
||||
|
||||
value = (2-weight)*value_1 + (weight-1)*value_2
|
||||
|
||||
if type(value_1) == type(value_2) == int:
|
||||
value = randround(value)
|
||||
|
||||
yield value
|
||||
return extrapolated_value
|
||||
|
||||
|
||||
@_check_weight
|
||||
def random(ga, parent_1, parent_2, *, weight = 0.5):
|
||||
@_gene_by_gene
|
||||
def random(ga, value_1, value_2, *, weight = 0.5):
|
||||
"""Cross two parents by taking a random integer or float value between each of the genes."""
|
||||
|
||||
values_1 = parent_1.gene_value_iter
|
||||
values_2 = parent_2.gene_value_iter
|
||||
value = value_1 + ga.weighted_random(weight) * (value_2-value_1)
|
||||
|
||||
for value_1, value_2 in zip(values_1, values_2):
|
||||
if type(value_1) == type(value_2) == int:
|
||||
value = randround(value)
|
||||
|
||||
# Weighted random value between value 1 and value 2
|
||||
value = value_1 + ga.weighted_random(weight) * (value_2-value_1)
|
||||
|
||||
if type(value_1) == type(value_2) == int:
|
||||
value = randround(value)
|
||||
|
||||
yield value
|
||||
yield value
|
||||
|
||||
|
||||
class Permutation:
|
||||
@ -212,7 +222,7 @@ class Crossover_Methods:
|
||||
gene_list_1[input_index] = gene_list_2.pop(-1)
|
||||
input_index += 1
|
||||
|
||||
return gene_list_1
|
||||
yield gene_list_1
|
||||
|
||||
|
||||
@_check_weight
|
||||
@ -221,7 +231,7 @@ class Crossover_Methods:
|
||||
and then filling in the rest of the genes from the second parent,
|
||||
preserving the ordering of genes wherever possible.
|
||||
|
||||
NOTE: Needs to be fixed."""
|
||||
NOTE: Needs to be fixed, since genes are not hashable..."""
|
||||
|
||||
# Too small to cross
|
||||
if len(parent_1) < 2:
|
||||
@ -272,4 +282,4 @@ class Crossover_Methods:
|
||||
gene_list_1[input_index] = gene_list_2.pop(-1)
|
||||
input_index += 1
|
||||
|
||||
return gene_list_1
|
||||
yield gene_list_1
|
||||
|
||||
Reference in New Issue
Block a user