Update crossover_methods.py

- Added check_weight decorator.
- Implemented better random floats with weights that allow weighting all the way to either side.
This commit is contained in:
SimpleArt
2020-12-02 23:13:35 -05:00
parent 2941be665c
commit 3271d7d271

View File

@ -11,6 +11,22 @@ def append_to_next_population(population_method):
)
def check_weight(individual_method):
"""Checks if the weight is between 0 and 1 before running.
Exception may occur when using ga.adapt, which will catch
the error and try again with valid weight.
"""
def new_method(ga, parent_1, parent_2, weight):
if 0 < weight < 1:
return individual_method(ga, parent_1, parent_2, weight)
else:
raise ValueError("Weight must be between 0 and 1 when using the given crossover method.")
return new_method
def genes_to_chromosome(individual_method):
"""Converts a collection of genes into a chromosome.
Note: Will recreate the gene list if given gene list.
@ -41,6 +57,7 @@ class Crossover_Methods:
# Private method decorators, see above.
_append_to_next_population = append_to_next_population
_check_weight = check_weight
_genes_to_chromosome = genes_to_chromosome
_values_to_genes = values_to_genes
@ -84,24 +101,21 @@ class Crossover_Methods:
"""Methods for crossing parents."""
@check_weight
@genes_to_chromosome
def single_point(ga, parent_1, parent_2, weight = 0.5):
"""Cross two parents by swapping genes at one random point."""
N = min(len(parent_1), len(parent_2))
# Equally weighted indexes
if weight == 0.5:
swap_index = random.randrange(N)
# Use weighted random index.
else:
weights = [
weight*(n+1) + (1-weight)*(N-n)
for n
in range(N)
]
swap_index = random.choices(range(N), weights)[0]
n = min(len(parent_1), len(parent_2))
t = 2*weight if (weight < 0.5) else 0.5 / (1-weight)
x = random.random()
swap_index = int(n * (1-(1-x)**t)**(1/t))
# Randomly choose which parent's genes are selected first.
if random.choice([True, False]):
@ -110,12 +124,14 @@ class Crossover_Methods:
return parent_2[:-swap_index] + parent_1[-swap_index:]
@check_weight
@genes_to_chromosome
def multi_point(ga, parent_1, parent_2, weight = 0.5):
"""Cross two parents by swapping genes at multiple points."""
pass
@check_weight
@genes_to_chromosome
def uniform(ga, parent_1, parent_2, weight = 0.5):
"""Cross two parents by swapping all genes randomly."""
@ -127,24 +143,6 @@ class Crossover_Methods:
class Arithmetic:
"""Crossover methods for numerical genes."""
@genes_to_chromosome
@values_to_genes
def random(ga, parent_1, parent_2, weight = 0.5):
"""Cross two parents by taking a random integer or float value between each of the genes."""
values_1 = parent_1.gene_value_iter
values_2 = parent_2.gene_value_iter
for value_1, value_2 in zip(values_1, values_2):
value = weight*values_1 + (1-weight)*random.uniform(value_1, value_2)
if type(value_1) == type(value_2) == int:
value = round(value + random.uniform(-0.5, 0.5))
yield value
@genes_to_chromosome
@values_to_genes
def average(ga, parent_1, parent_2, weight = 0.5):
@ -182,3 +180,32 @@ class Crossover_Methods:
value = round(value + random.uniform(-0.5, 0.5))
yield value
@check_weight
@genes_to_chromosome
@values_to_genes
def random(ga, parent_1, parent_2, weight = 0.5):
"""Cross two parents by taking a random integer or float value between each of the genes."""
values_1 = parent_1.gene_value_iter
values_2 = parent_2.gene_value_iter
for value_1, value_2 in zip(values_1, values_2):
# Use equally weighted values.
if weight == 0.5:
value = random.uniform(value_1, value_2)
# Use weighted random value, which gives values closer
# to value_1 if weight < 0.5 or values closer to value_2
# if weight > 0.5.
else:
t = 2*weight if (weight < 0.5) else 0.5 / (1-weight)
x = random.random()
value = value_1 + (value_2-value_1) * (1-(1-x)**t)**(1/t)
if type(value_1) == type(value_2) == int:
value = round(value + random.uniform(-0.5, 0.5))
yield value