Cleaner random functions used.
This commit is contained in:
@ -72,7 +72,7 @@ class Crossover_Methods:
|
||||
def single_point(ga, parent_1, parent_2):
|
||||
"""Cross two parents by swapping genes at one random point."""
|
||||
|
||||
swap_index = random.randint(0, len(parent_1)-1)
|
||||
swap_index = random.randrange(len(parent_1))
|
||||
return parent_1[:swap_index] + parent_2[swap_index:]
|
||||
|
||||
|
||||
|
||||
@ -37,7 +37,7 @@ class Mutation_Methods:
|
||||
def random_selection(ga):
|
||||
"""Selects random chromosomes."""
|
||||
|
||||
index = random.randint(0, len(ga.population)-1)
|
||||
index = random.randrange(len(ga.population))
|
||||
ga.population[index] = ga.mutation_individual_impl(ga, ga.population[index])
|
||||
|
||||
|
||||
@ -45,7 +45,7 @@ class Mutation_Methods:
|
||||
def random_selection_then_cross(ga):
|
||||
"""Selects random chromosomes and self-crosses with parent."""
|
||||
|
||||
index = random.randint(0, len(ga.population)-1)
|
||||
index = random.randrange(len(ga.population))
|
||||
chromosome = ga.population[index]
|
||||
ga.population[index] = ga.crossover_individual_impl(ga, chromosome, ga.mutation_individual_impl(ga, chromosome))
|
||||
|
||||
@ -56,7 +56,7 @@ class Mutation_Methods:
|
||||
@loop_mutations
|
||||
def individual_genes(ga, chromosome):
|
||||
"""Mutates a random gene in the chromosome."""
|
||||
index = random.randint(0, len(chromosome)-1)
|
||||
index = random.randrange(len(chromosome))
|
||||
|
||||
# Using the chromosome_impl
|
||||
if ga.chromosome_impl is not None:
|
||||
@ -79,7 +79,7 @@ class Mutation_Methods:
|
||||
def swap_genes(ga, chromosome):
|
||||
"""Swaps two random genes in the chromosome."""
|
||||
|
||||
index_one = random.randint(0, len(chromosome)-1)
|
||||
index_two = random.randint(0, len(chromosome)-1)
|
||||
index_one = random.randrange(len(chromosome))
|
||||
index_two = random.randrange(len(chromosome))
|
||||
|
||||
chromosome[index_one], chromosome[index_two] = chromosome[index_two], chromosome[index_one]
|
||||
|
||||
@ -68,7 +68,7 @@ class Parent_Selection:
|
||||
while (len(ga.population.get_mating_pool()) < len(ga.population)*ga.parent_ratio):
|
||||
|
||||
# Generate a random tournament group and sort by fitness.
|
||||
tournament_group = sorted([random.randint(0, len(ga.population)-1) for n in range(tournament_size)])
|
||||
tournament_group = sorted([random.randrange(len(ga.population)) for _ in range(tournament_size)])
|
||||
|
||||
# For each chromosome, add it to the mating pool based on its rank in the tournament.
|
||||
for index in range(tournament_size):
|
||||
@ -78,7 +78,7 @@ class Parent_Selection:
|
||||
# second ranked fitness has probability: selection_probability * (1-selection_probability)
|
||||
# third ranked fitness has probability: selection_probability * (1-selection_probability)^2
|
||||
# etc.
|
||||
if random.uniform(0, 1) < ga.selection_probability * pow(1-ga.selection_probability, index):
|
||||
if random.random() < ga.selection_probability * pow(1-ga.selection_probability, index):
|
||||
ga.population.set_parent(tournament_group[index])
|
||||
|
||||
# Stop if parent ratio reached
|
||||
@ -141,7 +141,7 @@ class Parent_Selection:
|
||||
while (len(ga.population.get_mating_pool()) < len(ga.population)*ga.parent_ratio):
|
||||
|
||||
# Selected chromosome
|
||||
index = random.randint(0, len(ga.population)-1)
|
||||
index = random.randrange(len(ga.population))
|
||||
|
||||
# Probability of becoming a parent is fitness/max_fitness
|
||||
if random.uniform(ga.selection_probability, 1) < ga.get_chromosome_fitness(index)/max_fitness:
|
||||
|
||||
Reference in New Issue
Block a user