Add files via upload
This commit is contained in:
150
src/EasyGA.py
150
src/EasyGA.py
@ -1,86 +1,46 @@
|
||||
import random
|
||||
# Import all the data structure prebuilt modules
|
||||
from initialization import Population as create_population
|
||||
from initialization import Chromosome as create_chromosome
|
||||
from initialization import Gene as create_gene
|
||||
# Structure Methods
|
||||
from fitness_function import Fitness_methods
|
||||
from initialization import Initialization_methods
|
||||
from termination_point import Termination_methods
|
||||
# Population Methods
|
||||
from survivor_selection import Survivor_methods
|
||||
# Manipulation Methods
|
||||
from parent_selection import Parent_methods
|
||||
from mutation import Mutation_methods
|
||||
from crossover import Crossover_methods
|
||||
from initialization import population as create_population
|
||||
from initialization import chromosome as create_chromosome
|
||||
from initialization import gene as create_gene
|
||||
# Import example classes
|
||||
from fitness_function import fitness_examples
|
||||
from initialization import initialization_examples
|
||||
from termination_point import termination_examples
|
||||
from selection import selection_examples
|
||||
from crossover import crossover_examples
|
||||
from repopulate import repopulate_examples
|
||||
from mutation import mutation_examples
|
||||
|
||||
class GA:
|
||||
def __init__(self):
|
||||
"""Initialize the GA."""
|
||||
"""Initialize the genetic algorithm. Where all the hyper parmeters are
|
||||
set for the the ga to function."""
|
||||
# Initilization variables
|
||||
self.chromosome_length = 3
|
||||
self.population_size = 5
|
||||
self.chromosome_impl = None
|
||||
self.gene_impl = None
|
||||
self.population = None
|
||||
self.chromosome_length = 3
|
||||
self.population_size = 10
|
||||
self.chromosome_impl = None
|
||||
self.gene_impl = None
|
||||
self.population = None
|
||||
# Termination varibles
|
||||
self.current_generation = 0
|
||||
self.generation_goal = 3
|
||||
|
||||
self.current_fitness = 0
|
||||
self.fitness_goal = 3
|
||||
self.current_fitness = 0
|
||||
self.generation_goal = 0
|
||||
self.fitness_goal = 4
|
||||
# Mutation variables
|
||||
self.mutation_rate = 0.03
|
||||
self.mutation_rate = 0.02
|
||||
|
||||
# Rerun already computed fitness
|
||||
self.update_fitness = False
|
||||
self.update_fitness = False
|
||||
|
||||
# Defualt EastGA implimentation structure
|
||||
self.initialization_impl = Initialization_methods.random_initialization
|
||||
self.fitness_funciton_impl = Fitness_methods.is_it_5
|
||||
# Selects which chromosomes should be automaticly moved to the next population
|
||||
#self.survivor_selection_impl = Survivor_methods.
|
||||
# Methods for accomplishing parent-selection -> Crossover -> Mutation
|
||||
#self.parent_selection_impl = Parent_methods.
|
||||
#self.crossover_impl = Crossover_methods.
|
||||
#self.mutation_impl = Mutation_methods.
|
||||
# The type of termination to impliment
|
||||
self.termination_impl = Termination_methods.generation_based
|
||||
|
||||
def evolve_generation(self, number_of_generations = 1):
|
||||
"""Evolves the ga the specified number of generations."""
|
||||
while(number_of_generations > 0):
|
||||
# If its the first generation then initialize the population
|
||||
if(self.current_generation == 0):
|
||||
# Initialize the population
|
||||
self.initialize_population()
|
||||
# First get the fitness of the population
|
||||
self.get_population_fitness(self.population.chromosome_list)
|
||||
# Selection - Triggers flags in the chromosome if its been selected
|
||||
# self.selection_impl(self)
|
||||
# Crossover - Takes the flagged chromosome_list and crosses there genetic
|
||||
# makup to make new offsprings.
|
||||
# self.crossover_impl(self)
|
||||
# Repopulate - Manipulates the population to some desired way
|
||||
# self.repopulate_impl(self)
|
||||
# Mutation - Manipulates the population very slightly
|
||||
# self.mutation_impl(self)
|
||||
|
||||
# Counter for the local number of generations in evolve_generation
|
||||
number_of_generations -= 1
|
||||
# Add one to the current overall generation
|
||||
self.current_generation += 1
|
||||
|
||||
def evolve(self):
|
||||
"""Runs the ga until the termination point has been satisfied."""
|
||||
# While the termination point hasnt been reached keep running
|
||||
while(self.active()):
|
||||
self.evolve_generation()
|
||||
|
||||
def active(self):
|
||||
"""Returns if the ga should terminate base on the termination implimented"""
|
||||
# Send termination_impl the whole ga class
|
||||
return self.termination_impl(self)
|
||||
self.initialization_impl = initialization_examples.random_initialization
|
||||
self.fitness_funciton_impl = fitness_examples.is_it_5
|
||||
self.selection_impl = selection_examples.roulette
|
||||
self.crossover_impl = crossover_examples.single_point_crossover
|
||||
self.repopulate_impl = repopulate_examples.kill_two_worst
|
||||
self.mutation_impl = mutation_examples.per_gene_mutation
|
||||
self.termination_impl = termination_examples.generation_based
|
||||
|
||||
def initialize_population(self):
|
||||
"""Initialize the population using the initialization
|
||||
@ -96,9 +56,53 @@ class GA:
|
||||
for chromosome in population:
|
||||
# If the fitness is not set then get its fitness or if allways getting
|
||||
# fitness is turn on then always get the fitness of the chromosome.
|
||||
if(chromosome.fitness == None or self.update_fitness == True):
|
||||
# Set the chromosomes fitness using the fitness function
|
||||
chromosome.fitness = self.fitness_funciton_impl(chromosome)
|
||||
chromosome.set_fitness(self.fitness_funciton_impl(chromosome))
|
||||
|
||||
|
||||
def evolve(self):
|
||||
"""Runs the ga until the termination point has been satisfied."""
|
||||
# While the termination point hasnt been reached keep running
|
||||
while(self.active()):
|
||||
self.evolve_generation()
|
||||
|
||||
def active(self):
|
||||
"""Returns if the ga should terminate base on the termination implimented"""
|
||||
# Send termination_impl the whole ga class
|
||||
return self.termination_impl(self)
|
||||
|
||||
|
||||
def evolve_generation(self, number_of_generations = 1):
|
||||
"""Evolves the ga the specified number of generations."""
|
||||
while(number_of_generations > 0):
|
||||
# If its the first generation then initialize the population
|
||||
if(self.current_generation == 0):
|
||||
# Initialize the population
|
||||
self.initialize_population()
|
||||
# First get the fitness of the population
|
||||
self.get_population_fitness(self.population.chromosome_list)
|
||||
|
||||
|
||||
"""A new population is created every generation"""
|
||||
# Selection - Triggers flags in the chromosome if its been selected
|
||||
self.selection_impl(self)
|
||||
# Crossover - Takes the flagged chromosomes and crosses there genetic
|
||||
# makup to make new offsprings.
|
||||
self.crossover_impl(self)
|
||||
# Repopulate - Manipulates the population to some desired way Ex. Elitism
|
||||
self.repopulate_impl(self)
|
||||
# Mutation - Manipulates the population very slightly
|
||||
self.mutation_impl(self)
|
||||
|
||||
# Print the current generation number
|
||||
print()
|
||||
print(f"Generation - {self.current_generation}")
|
||||
# Print the current population
|
||||
self.population.print_all()
|
||||
|
||||
# Counter for the local number of generations in evolve_generation
|
||||
number_of_generations -= 1
|
||||
# Add one to the current overall generation
|
||||
self.current_generation += 1
|
||||
|
||||
def make_gene(self,value):
|
||||
"""Let's the user create a gene."""
|
||||
|
||||
Reference in New Issue
Block a user