Improved documentation, type-hints, and dataclass
This commit is contained in:
@ -1,228 +1,102 @@
|
||||
# Import signature tool to check if functions start with self or ga
|
||||
from __future__ import annotations
|
||||
from inspect import signature
|
||||
|
||||
# Import math for square root (ga.dist()) and ceil (crossover methods)
|
||||
import math
|
||||
|
||||
from typing import Callable, Optional, Iterable, Any, Dict
|
||||
from math import sqrt, ceil
|
||||
from dataclasses import dataclass, field
|
||||
from functools import wraps
|
||||
import random
|
||||
|
||||
import sqlite3
|
||||
from copy import deepcopy
|
||||
|
||||
# Import all the data structure prebuilt modules
|
||||
from structure import Population as make_population
|
||||
from structure import Chromosome as make_chromosome
|
||||
from structure import Gene as make_gene
|
||||
|
||||
# Misc. Methods
|
||||
from examples import Fitness
|
||||
from termination import Termination
|
||||
|
||||
# Parent/Survivor Selection Methods
|
||||
from parent import Parent
|
||||
from survivor import Survivor
|
||||
|
||||
# Genetic Operator Methods
|
||||
from crossover import Crossover
|
||||
from mutation import Mutation
|
||||
|
||||
# Database class
|
||||
from database import sql_database
|
||||
from sqlite3 import Error
|
||||
|
||||
# Graphing package
|
||||
from database import matplotlib_graph
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from structure import Population
|
||||
from structure import Chromosome
|
||||
from structure import Gene
|
||||
|
||||
from examples import Fitness
|
||||
from termination import Termination
|
||||
from parent import Parent
|
||||
from survivor import Survivor
|
||||
from crossover import Crossover
|
||||
from mutation import Mutation
|
||||
from database import sql_database, matplotlib_graph
|
||||
|
||||
|
||||
@dataclass
|
||||
class Attributes:
|
||||
"""Default GA attributes can be found here. If any attributes have not
|
||||
been set then they will fall back onto the default attribute. All
|
||||
attributes have been catigorized to explain sections in the ga process."""
|
||||
"""
|
||||
Attributes class which stores all attributes in a dataclass.
|
||||
Contains default attributes for each attribute.
|
||||
"""
|
||||
|
||||
#=====================#
|
||||
# Default GA methods: #
|
||||
#=====================#
|
||||
properties: Dict[str, Any] = field(default_factory=dict, init=False, repr=False, compare=False)
|
||||
|
||||
# Default EasyGA implimentation structure
|
||||
fitness_function_impl = Fitness.is_it_5
|
||||
make_population = make_population
|
||||
make_chromosome = make_chromosome
|
||||
make_gene = make_gene
|
||||
run: int = 0
|
||||
|
||||
# Methods for accomplishing Parent-Selection -> Crossover -> Survivor_Selection -> Mutation -> Termination
|
||||
parent_selection_impl = Parent.Rank.tournament
|
||||
crossover_individual_impl = Crossover.Individual.single_point
|
||||
crossover_population_impl = Crossover.Population.sequential
|
||||
survivor_selection_impl = Survivor.fill_in_best
|
||||
mutation_individual_impl = Mutation.Individual.individual_genes
|
||||
mutation_population_impl = Mutation.Population.random_avoid_best
|
||||
termination_impl = Termination.fitness_generation_tolerance
|
||||
chromosome_length: int = 10
|
||||
population_size: int = 10
|
||||
population: Optional[Population] = None
|
||||
|
||||
target_fitness_type: str = 'max'
|
||||
update_fitness: bool = False
|
||||
|
||||
def dist(self, chromosome_1, chromosome_2):
|
||||
"""Default distance lambda. Returns the square root of the difference in fitnesses."""
|
||||
return math.sqrt(abs(chromosome_1.fitness - chromosome_2.fitness))
|
||||
parent_ratio: float = 0.1
|
||||
selection_probability: float = 0.5
|
||||
tournament_size_ratio: float = 0.1
|
||||
|
||||
current_generation: int = 0
|
||||
generation_goal: int = 100
|
||||
fitness_goal: Optional[float] = None
|
||||
tolerance_goal: Optional[float] = None
|
||||
percentage_converged: float = 0.5
|
||||
|
||||
def weighted_random(self, weight):
|
||||
"""Returns a random value between 0 and 1. Returns values between the weight and the
|
||||
nearest of 0 and 1 less frequently than between weight and the farthest of 0 and 1."""
|
||||
chromosome_mutation_rate: float = 0.15
|
||||
gene_mutation_rate: float = 0.05
|
||||
|
||||
rand_num = random.random()
|
||||
if rand_num < weight:
|
||||
return (1-weight) * rand_num / weight
|
||||
else:
|
||||
return 1 - weight * (1-rand_num) / (1-weight)
|
||||
adapt_rate: float = 0.05
|
||||
adapt_probability_rate: float = 0.05
|
||||
adapt_population_flag: bool = True
|
||||
|
||||
max_selection_probability: float = 0.75
|
||||
min_selection_probability: float = 0.25
|
||||
max_chromosome_mutation_rate: float = None
|
||||
min_chromosome_mutation_rate: float = None
|
||||
max_gene_mutation_rate: float = 0.15
|
||||
min_gene_mutation_rate: float = 0.01
|
||||
|
||||
def gene_impl(self, *args, **kwargs):
|
||||
"""Default gene implementation. Returns a random integer from 1 to 10."""
|
||||
return random.randint(1, 10)
|
||||
fitness_function_impl: Callable[[Attributes, Chromosome], float] = Fitness.is_it_5
|
||||
make_population: Callable[[Iterable[Iterable[Any]]], Population] = Population
|
||||
make_chromosome: Callable[[Iterable[Any]], Chromosome] = Chromosome
|
||||
make_gene: Callable[[Any], Gene] = Gene
|
||||
|
||||
gene_impl: Callable[[Attributes], Any] = field(default_factory=lambda: rand_1_to_10)
|
||||
chromosome_impl: Optional[[Attributes], Iterable[Any]] = field(default_factory=lambda: use_genes)
|
||||
population_impl: Optional[[Attributes], Iterable[Iterable[Any]]] = field(default_factory=lambda: use_chromosomes)
|
||||
|
||||
chromosome_impl = None
|
||||
weighted_random: Callable[[Attributes, float], float] = field(default_factory=lambda: simple_linear)
|
||||
dist: Callable[[Attributes, Chromosome, Chromosome], float] = field(default_factory=lambda: dist_fitness)
|
||||
|
||||
parent_selection_impl: Callable[[Attributes], None] = Parent.Rank.tournament
|
||||
crossover_individual_impl: Callable[[Attributes], None] = Crossover.Individual.single_point
|
||||
crossover_population_impl: Callable[[Attributes], None] = Crossover.Population.sequential
|
||||
survivor_selection_impl: Callable[[Attributes], None] = Survivor.fill_in_best
|
||||
mutation_individual_impl: Callable[[Attributes], None] = Mutation.Individual.individual_genes
|
||||
mutation_population_impl: Callable[[Attributes], None] = Mutation.Population.random_avoid_best
|
||||
termination_impl: Callable[[Attributes], None] = Termination.fitness_generation_tolerance
|
||||
|
||||
#=====================================#
|
||||
# Special built-in class __methods__: #
|
||||
#=====================================#
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
# Attributes must be passed in using kwargs
|
||||
|
||||
run = 0,
|
||||
|
||||
chromosome_length = 10,
|
||||
population_size = 10,
|
||||
population = None,
|
||||
target_fitness_type = 'max',
|
||||
update_fitness = False,
|
||||
save_data = True,
|
||||
|
||||
parent_ratio = 0.10,
|
||||
selection_probability = 0.50,
|
||||
tournament_size_ratio = 0.10,
|
||||
|
||||
current_generation = 0,
|
||||
current_fitness = 0,
|
||||
|
||||
generation_goal = 100,
|
||||
fitness_goal = None,
|
||||
tolerance_goal = None,
|
||||
percent_converged = 0.50,
|
||||
|
||||
chromosome_mutation_rate = 0.15,
|
||||
gene_mutation_rate = 0.05,
|
||||
|
||||
adapt_rate = 0.05,
|
||||
adapt_probability_rate = 0.05,
|
||||
adapt_population_flag = True,
|
||||
|
||||
max_selection_probability = 0.75,
|
||||
min_selection_probability = 0.25,
|
||||
max_chromosome_mutation_rate = None,
|
||||
min_chromosome_mutation_rate = None,
|
||||
max_gene_mutation_rate = 0.15,
|
||||
min_gene_mutation_rate = 0.01,
|
||||
|
||||
Database = sql_database.SQL_Database,
|
||||
database_name = 'database.db',
|
||||
sql_create_data_structure = f"""
|
||||
CREATE TABLE IF NOT EXISTS data (
|
||||
database: Database = sql_database.SQL_Database
|
||||
database_name: str = 'database.db'
|
||||
sql_create_data_structure: str = """
|
||||
CREATE TABLE IF NOT EXISTS data (
|
||||
id INTEGER PRIMARY KEY,
|
||||
config_id INTEGER DEFAULT NULL,
|
||||
generation INTEGER NOT NULL,
|
||||
fitness REAL,
|
||||
chromosome TEXT
|
||||
); """,
|
||||
);
|
||||
"""
|
||||
|
||||
Graph = matplotlib_graph.Matplotlib_Graph,
|
||||
|
||||
**kwargs
|
||||
):
|
||||
|
||||
# Keep track of the current run
|
||||
self.run = run
|
||||
|
||||
# Initilization variables
|
||||
self.chromosome_length = chromosome_length
|
||||
self.population_size = population_size
|
||||
self.population = population
|
||||
self.target_fitness_type = target_fitness_type
|
||||
self.update_fitness = update_fitness
|
||||
self.save_data = save_data
|
||||
|
||||
# Selection variables
|
||||
self.parent_ratio = parent_ratio
|
||||
self.selection_probability = selection_probability
|
||||
self.tournament_size_ratio = tournament_size_ratio
|
||||
|
||||
# Termination variables
|
||||
self.current_generation = current_generation
|
||||
self.current_fitness = current_fitness
|
||||
self.generation_goal = generation_goal
|
||||
self.fitness_goal = fitness_goal
|
||||
self.tolerance_goal = tolerance_goal
|
||||
self.percent_converged = percent_converged
|
||||
|
||||
# Mutation variables
|
||||
self.chromosome_mutation_rate = chromosome_mutation_rate
|
||||
self.gene_mutation_rate = gene_mutation_rate
|
||||
|
||||
# Adapt variables
|
||||
self.adapt_rate = adapt_rate
|
||||
self.adapt_probability_rate = adapt_probability_rate
|
||||
self.adapt_population_flag = adapt_population_flag
|
||||
|
||||
# Bounds on probabilities when adapting
|
||||
self.max_selection_probability = max_selection_probability
|
||||
self.min_selection_probability = min_selection_probability
|
||||
self.max_chromosome_mutation_rate = max_chromosome_mutation_rate
|
||||
self.min_chromosome_mutation_rate = min_chromosome_mutation_rate
|
||||
self.max_gene_mutation_rate = max_gene_mutation_rate
|
||||
self.min_gene_mutation_rate = min_gene_mutation_rate
|
||||
|
||||
# Database varibles
|
||||
self.database = Database()
|
||||
self.database_name = database_name
|
||||
self.sql_create_data_structure = sql_create_data_structure
|
||||
|
||||
# Graphing variables
|
||||
self.graph = Graph(self.database)
|
||||
|
||||
# Any other custom kwargs?
|
||||
for name, value in kwargs.items():
|
||||
self.__setattr__(name, value)
|
||||
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
"""Custom setter for using
|
||||
|
||||
self.name = value
|
||||
|
||||
which follows the following guidelines:
|
||||
- if self.name is a property, the specific property setter is used
|
||||
- else if value is callable and the first parameter is either 'self' or 'ga', self is passed in as the first parameter
|
||||
- else if value is not None or self.name is not set, assign it like normal
|
||||
"""
|
||||
|
||||
# Check for property
|
||||
if hasattr(type(self), name) and isinstance(getattr(type(self), name), property):
|
||||
getattr(type(self), name).fset(self, value)
|
||||
|
||||
# Check for function
|
||||
elif callable(value) and next(iter(signature(value).parameters), None) in ('self', 'ga'):
|
||||
foo = lambda *args, **kwargs: value(self, *args, **kwargs)
|
||||
# Reassign name and doc-string for documentation
|
||||
foo.__name__ = value.__name__
|
||||
foo.__doc__ = value.__doc__
|
||||
self.__dict__[name] = foo
|
||||
|
||||
# Assign like normal unless None or undefined self.name
|
||||
elif value is not None or not hasattr(self, name):
|
||||
self.__dict__[name] = value
|
||||
graph: Callable[[Database], Graph] = matplotlib_graph.Matplotlib_Graph
|
||||
|
||||
|
||||
#============================#
|
||||
@ -230,206 +104,338 @@ class Attributes:
|
||||
#============================#
|
||||
|
||||
|
||||
def save_population(self):
|
||||
def save_population(self: Attributes) -> None:
|
||||
"""Saves the current population to the database."""
|
||||
self.database.insert_current_population(self)
|
||||
|
||||
|
||||
def save_chromosome(self, chromosome):
|
||||
"""Saves the given chromosome to the database."""
|
||||
def save_chromosome(self: Attributes, chromosome: Chromosome) -> None:
|
||||
"""
|
||||
Saves a chromosome to the database.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
chromosome : Chromosome
|
||||
The chromosome to be saved.
|
||||
"""
|
||||
self.database.insert_current_chromosome(self.current_generation, chromosome)
|
||||
|
||||
|
||||
#===================#
|
||||
# Built-in options: #
|
||||
#===================#
|
||||
def rand_1_to_10(self: Attributes) -> int:
|
||||
"""
|
||||
Default gene_impl, returning a random integer from 1 to 10.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rand : int
|
||||
A random integer between 1 and 10, inclusive.
|
||||
"""
|
||||
return random.randint(1, 10)
|
||||
|
||||
|
||||
def numeric_chromosomes(self):
|
||||
"""Sets default numerical based methods"""
|
||||
def use_genes(self: Attributes) -> Iterable[Any]:
|
||||
"""
|
||||
Default chromosome_impl, generates a chromosome using the gene_impl and chromosome length.
|
||||
|
||||
# Adapt every 10th generation
|
||||
self.adapt_rate = 0.10
|
||||
Attributes
|
||||
----------
|
||||
gene_impl() -> Any
|
||||
A gene implementation.
|
||||
chromosome_length : int
|
||||
The length of a chromosome.
|
||||
|
||||
# Use averaging for crossover
|
||||
self.crossover_individual_impl = Crossover.Individual.Arithmetic.average
|
||||
|
||||
# Use averaging for mutation
|
||||
self.mutation_individual_impl = Mutation.Individual.individual_genes
|
||||
|
||||
# Euclidean norm
|
||||
self.dist = lambda self, chromosome_1, chromosome_2:\
|
||||
math.sqrt(sum(
|
||||
(gene_1.value - gene_2.value) ** 2
|
||||
for gene_1, gene_2
|
||||
in zip(chromosome_1, chromosome_2)
|
||||
))
|
||||
Returns
|
||||
-------
|
||||
chromosome : Iterable[Any]
|
||||
Generates the genes for a chromosome.
|
||||
"""
|
||||
for _ in range(self.chromosome_length):
|
||||
yield self.gene_impl()
|
||||
|
||||
|
||||
def permutation_chromosomes(self, cycle = True):
|
||||
"""Sets default permutation based methods"""
|
||||
def use_chromosomes(self: Attributes) -> Iterable[Any]:
|
||||
"""
|
||||
Default population_impl, generates a population using the chromosome_impl and population size.
|
||||
|
||||
cycle = int(cycle)
|
||||
Attributes
|
||||
----------
|
||||
chromosome_impl() -> Any
|
||||
A chromosome implementation.
|
||||
population_size : int
|
||||
The size of the population.
|
||||
|
||||
self.crossover_individual_impl = Crossover.Individual.Permutation.ox1
|
||||
self.mutation_individual_impl = Mutation.Individual.Permutation.swap_genes
|
||||
|
||||
def dist(self, chromosome_1, chromosome_2):
|
||||
"""Count the number of gene pairs they don't have in common."""
|
||||
|
||||
return sum(
|
||||
1
|
||||
for x, y
|
||||
in zip(chromosome_1, chromosome_2)
|
||||
if x != y
|
||||
)
|
||||
|
||||
self.dist = dist
|
||||
Returns
|
||||
-------
|
||||
population : Iterable[Iterable[Any]]
|
||||
Generates the chromosomes for a population.
|
||||
"""
|
||||
for _ in range(self.population_size):
|
||||
yield self.chromosome_impl()
|
||||
|
||||
|
||||
#===========================#
|
||||
# Getter/setter properties: #
|
||||
#===========================#
|
||||
def dist_fitness(self: Attributes, chromosome_1: Chromosome, chromosome_2: Chromosome) -> float:
|
||||
"""
|
||||
Measures the distance between two chromosomes based on their fitnesses.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
chromosome_1, chromosome_2 : Chromosome
|
||||
Chromosomes being compared.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dist : float
|
||||
The distance between the two chromosomes.
|
||||
"""
|
||||
return sqrt(abs(chromosome_1.fitness - chromosome_2.fitness))
|
||||
|
||||
|
||||
@property
|
||||
def run(self):
|
||||
"""Getter function for the run counter."""
|
||||
return self._run
|
||||
def simple_linear(self: Attributes, weight: float) -> float:
|
||||
"""
|
||||
Returns a random value between 0 and 1, with increased probability
|
||||
closer towards the side with weight.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
weight : float
|
||||
A float between 0 and 1 which determines the output distribution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rand : float
|
||||
A random value between 0 and 1.
|
||||
"""
|
||||
rand = random.random()
|
||||
if rand < weight:
|
||||
return rand * (1-weight) / weight
|
||||
else:
|
||||
return 1 - (1-rand) * weight / (1-weight)
|
||||
|
||||
|
||||
@run.setter
|
||||
def run(self, value):
|
||||
"""Setter function for the run counter."""
|
||||
if not(isinstance(value, int) and value >= 0):
|
||||
raise ValueError("ga.run counter must be an integer greater than or equal to 0.")
|
||||
self._run = value
|
||||
#==================================================#
|
||||
# Properties for attributes behaving like methods. #
|
||||
#==================================================#
|
||||
|
||||
|
||||
@property
|
||||
def current_generation(self):
|
||||
"""Getter function for the current generation."""
|
||||
return self._current_generation
|
||||
def get_method(name: str) -> Callable[[Attributes], Callable[..., Any]]:
|
||||
"""
|
||||
Creates a getter method for getting a method from the Attributes class.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
The name of the method from Attributes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
getter(ga)(...) -> Any
|
||||
The getter property, taking in an object and returning the method.
|
||||
"""
|
||||
def getter(self: Attributes) -> Callable[..., Any]:
|
||||
return self.properties[name]
|
||||
return getter
|
||||
|
||||
|
||||
@current_generation.setter
|
||||
def current_generation(self, generation):
|
||||
"""Setter function for the current generation."""
|
||||
def set_method(name: str) -> Callable[[Attributes, Optional[Callable[..., Any]]], None]:
|
||||
"""
|
||||
Creates a setter method for setting a method from the Attributes class.
|
||||
|
||||
if not isinstance(generation, int) or generation < 0:
|
||||
raise ValueError("ga.current_generation must be an integer greater than or equal to 0")
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
The name of the method from Attributes.
|
||||
|
||||
self._current_generation = generation
|
||||
Returns
|
||||
-------
|
||||
setter(ga, method)
|
||||
The setter property, taking in an object and returning nothing.
|
||||
"""
|
||||
def setter(self: Attributes, method: Optional[Callable[..., Any]]) -> None:
|
||||
if method is None:
|
||||
pass
|
||||
elif not callable(method):
|
||||
raise TypeError(f"{name} must be a method i.e. callable.")
|
||||
elif next(iter(signature(method).parameters), None) in ("self", "ga"):
|
||||
method = wraps(method)(lambda *args, **kwargs: method(self, *args, **kwargs))
|
||||
self.properties[name] = method
|
||||
return setter
|
||||
|
||||
|
||||
@property
|
||||
def chromosome_length(self):
|
||||
"""Getter function for chromosome length"""
|
||||
return self._chromosome_length
|
||||
for name in (
|
||||
"fitness_function_impl",
|
||||
"parent_selection_impl",
|
||||
"crossover_individual_impl",
|
||||
"crossover_population_impl",
|
||||
"survivor_selection_impl",
|
||||
"mutation_individual_impl",
|
||||
"mutation_population_impl",
|
||||
"termination_impl",
|
||||
"dist",
|
||||
"weighted_random",
|
||||
"gene_impl",
|
||||
"chromosome_impl",
|
||||
):
|
||||
setattr(Attributes, name, property(get_method(name), set_method(name)))
|
||||
|
||||
|
||||
@chromosome_length.setter
|
||||
def chromosome_length(self, length):
|
||||
"""Setter function with error checking for chromosome length"""
|
||||
|
||||
if(not isinstance(length, int) or length <= 0):
|
||||
raise ValueError("Chromosome length must be integer greater than 0")
|
||||
|
||||
self._chromosome_length = length
|
||||
#============================#
|
||||
# Static checking properties #
|
||||
#============================#
|
||||
|
||||
|
||||
@property
|
||||
def population_size(self):
|
||||
"""Getter function for population size"""
|
||||
|
||||
return self._population_size
|
||||
static_checks = {
|
||||
"run": {
|
||||
"check": lambda value: isinstance(value, int) and value >= 0,
|
||||
"error": "ga.run counter must be an integer greater than or equal to 0.",
|
||||
},
|
||||
"current_generation": {
|
||||
"check": lambda value: isinstance(value, int) and value >= 0,
|
||||
"error": "ga.current_generation must be an integer greater than or equal to 0",
|
||||
},
|
||||
"chromosome_length": {
|
||||
"check": lambda value: isinstance(value, int) and value > 0,
|
||||
"error": "ga.chromosome_length must be an integer greater than and not equal to 0.",
|
||||
},
|
||||
"population_size": {
|
||||
"check": lambda value: isinstance(value, int) and value > 0,
|
||||
"error": "ga.population_size must be an integer greater than and not equal to 0.",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
@population_size.setter
|
||||
def population_size(self, size):
|
||||
"""Setter function with error checking for population size"""
|
||||
def get_attr(name: str) -> Callable[[Attributes], Any]:
|
||||
"""
|
||||
Creates a getter method for getting an attribute from the Attributes class.
|
||||
|
||||
if(not isinstance(size, int) or size <= 0):
|
||||
raise ValueError("Population size must be integer greater than 0")
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
The name of the attribute.
|
||||
|
||||
self._population_size = size
|
||||
Returns
|
||||
-------
|
||||
getter(ga) -> Any
|
||||
A getter method which returns an attribute.
|
||||
"""
|
||||
def getter(self: Attributes) -> Any:
|
||||
return self.properties[name]
|
||||
return getter
|
||||
|
||||
|
||||
@property
|
||||
def target_fitness_type(self):
|
||||
"""Getter function for target fitness type."""
|
||||
def set_attr(name: str, check: Callable[[Any], bool], error: str) -> Callable[[Attributes, Any], None]:
|
||||
"""
|
||||
Creates a setter method for setting an attribute from the Attributes class.
|
||||
|
||||
return self._target_fitness_type
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
The name of the attribute.
|
||||
check(Any) -> bool
|
||||
The condition needed to be passed for the attribute to be added.
|
||||
error: str
|
||||
An error message if check(...) turns False.
|
||||
|
||||
|
||||
@target_fitness_type.setter
|
||||
def target_fitness_type(self, target_fitness_type):
|
||||
"""Setter function for target fitness type."""
|
||||
|
||||
self._target_fitness_type = target_fitness_type
|
||||
|
||||
|
||||
@property
|
||||
def max_chromosome_mutation_rate(self):
|
||||
"""Getter function for max chromosome mutation rate"""
|
||||
|
||||
return self._max_chromosome_mutation_rate
|
||||
|
||||
|
||||
@max_chromosome_mutation_rate.setter
|
||||
def max_chromosome_mutation_rate(self, rate):
|
||||
"""Setter function with error checking and default value for max chromosome mutation rate"""
|
||||
|
||||
# Default value
|
||||
if rate is None:
|
||||
self._max_chromosome_mutation_rate = min(self.chromosome_mutation_rate*2, (1+self.chromosome_mutation_rate)/2)
|
||||
|
||||
# Otherwise check value
|
||||
elif 0 <= rate <= 1:
|
||||
self._max_chromosome_mutation_rate = rate
|
||||
|
||||
# Throw error
|
||||
Returns
|
||||
-------
|
||||
setter(ga, Any) -> None
|
||||
Raises ValueError(error)
|
||||
A setter method which saves to an attribute.
|
||||
"""
|
||||
def setter(self: Attributes, value: Any) -> Any:
|
||||
if check(value):
|
||||
self.properties[name] = value
|
||||
else:
|
||||
raise ValueError("Max chromosome mutation rate must be between 0 and 1")
|
||||
raise ValueError(error)
|
||||
return setter
|
||||
|
||||
|
||||
@property
|
||||
def min_chromosome_mutation_rate(self):
|
||||
"""Getter function for min chromosome mutation rate"""
|
||||
|
||||
return self._min_chromosome_mutation_rate
|
||||
for name in static_checks:
|
||||
setattr(
|
||||
Attributes,
|
||||
name,
|
||||
property(
|
||||
get_attr(name),
|
||||
set_attr(name, static_checks[name]["check"], static_checks[name]["error"]),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@min_chromosome_mutation_rate.setter
|
||||
def min_chromosome_mutation_rate(self, rate):
|
||||
"""Setter function with error checking and default value for min chromosome mutation rate"""
|
||||
|
||||
# Default value
|
||||
if rate is None:
|
||||
self._min_chromosome_mutation_rate = self.chromosome_mutation_rate/2
|
||||
|
||||
# Otherwise check value
|
||||
elif 0 <= rate <= 1:
|
||||
self._min_chromosome_mutation_rate = rate
|
||||
|
||||
# Throw error
|
||||
else:
|
||||
raise ValueError("Min chromosome mutation rate must be between 0 and 1")
|
||||
#==================#
|
||||
# Other properties #
|
||||
#==================#
|
||||
|
||||
|
||||
@property
|
||||
def database_name(self):
|
||||
"""Getter function for the database name"""
|
||||
|
||||
return self._database_name
|
||||
def get_max_chromosome_mutation_rate(self: Attributes) -> float:
|
||||
return self._max_chromosome_mutation_rate
|
||||
|
||||
|
||||
@database_name.setter
|
||||
def database_name(self, value_input):
|
||||
"""Setter function with error checking for the database name"""
|
||||
def set_max_chromosome_mutation_rate(self: Attributes, value: Optional[float]) -> None:
|
||||
|
||||
# Update the database class of the name change
|
||||
self.database._database_name = value_input
|
||||
# Default value
|
||||
if value is None:
|
||||
self._max_chromosome_mutation_rate = min(
|
||||
self.chromosome_mutation_rate * 2,
|
||||
(self.chromosome_mutation_rate + 1) / 2,
|
||||
)
|
||||
|
||||
# Set the name in the ga attribute
|
||||
self._database_name = value_input
|
||||
# Otherwise check value
|
||||
elif isinstance(value, (float, int)) and 0 <= value <= 1:
|
||||
self._max_chromosome_mutation_rate = value
|
||||
|
||||
# Raise error
|
||||
else:
|
||||
raise ValueError("Max chromosome mutation rate must be between 0 and 1")
|
||||
|
||||
|
||||
def get_min_chromosome_mutation_rate(self: Attributes) -> float:
|
||||
return self._min_chromosome_mutation_rate
|
||||
|
||||
|
||||
def set_min_chromosome_mutation_rate(self: Attributes, value: Optional[float]) -> None:
|
||||
|
||||
# Default value
|
||||
if value is None:
|
||||
self._min_chromosome_mutation_rate = max(
|
||||
self.chromosome_mutation_rate / 2,
|
||||
self.chromosome_mutation_rate * 2 - 1,
|
||||
)
|
||||
|
||||
# Otherwise check value
|
||||
elif isinstance(value, (float, int)) and 0 <= value <= 1:
|
||||
self._min_chromosome_mutation_rate = value
|
||||
|
||||
# Raise error
|
||||
else:
|
||||
raise ValueError("Min chromosome mutation rate must be between 0 and 1")
|
||||
|
||||
|
||||
def get_database_name(self: Attributes) -> str:
|
||||
return self._database_name
|
||||
|
||||
|
||||
def set_database_name(self: Attributes, name: str) -> None:
|
||||
|
||||
# Update the database class' name
|
||||
self.database._database_name = name
|
||||
|
||||
# Set the attribute for itself
|
||||
self._database_name = name
|
||||
|
||||
|
||||
def get_graph(self: Attributes) -> Graph:
|
||||
return self._graph
|
||||
|
||||
|
||||
def set_graph(self: Attributes, graph: Callable[[Database], Graph]) -> None:
|
||||
self._graph = graph(self.database)
|
||||
|
||||
|
||||
def get_active(self: Attributes) -> Callable[[Attributes], None]:
|
||||
return self.termination_impl
|
||||
|
||||
|
||||
Attributes.max_chromosome_mutation_rate = property(get_max_chromosome_mutation_rate, set_max_chromosome_mutation_rate)
|
||||
Attributes.min_chromosome_mutation_rate = property(get_min_chromosome_mutation_rate, set_min_chromosome_mutation_rate)
|
||||
Attributes.database_name = property(get_database_name, set_database_name)
|
||||
Attributes.graph = property(get_graph, set_graph)
|
||||
Attributes.active = property(get_active)
|
||||
|
||||
Reference in New Issue
Block a user