Updated Implementation Framework
Updated to cover changes made by Dan to Master regarding general design changes Also added remove_two_worst survivor selection method
This commit is contained in:
@ -3,25 +3,29 @@ import random
|
||||
from initialization import Population as create_population
|
||||
from initialization import Chromosome as create_chromosome
|
||||
from initialization import Gene as create_gene
|
||||
# Import example classes
|
||||
# Structure Methods
|
||||
from fitness_function import Fitness_Examples
|
||||
from initialization import Initialization_Types
|
||||
from termination_point import Termination_Types
|
||||
from selection import Selection_Types
|
||||
from crossover import Crossover_Types
|
||||
from mutation import Mutation_Types
|
||||
from initialization import Initialization_Methods
|
||||
from termination_point import Termination_Methods
|
||||
# Population Methods
|
||||
from selection import Selection_Methods
|
||||
# Manipulation Methods
|
||||
from mutation import Mutation_Methods
|
||||
from crossover import Crossover_Methods
|
||||
|
||||
class GA:
|
||||
def __init__(self):
|
||||
"""Initialize the GA."""
|
||||
# Initilization variables
|
||||
self.chromosome_length = 10
|
||||
self.population_size = 150
|
||||
self.population_size = 100
|
||||
self.chromosome_impl = None
|
||||
self.gene_impl = None
|
||||
self.population = None
|
||||
# Termination varibles
|
||||
self.current_generation = 0
|
||||
self.generation_goal = 50
|
||||
|
||||
self.current_fitness = 0
|
||||
self.generation_goal = 100
|
||||
self.fitness_goal = 3
|
||||
@ -32,19 +36,52 @@ class GA:
|
||||
self.update_fitness = True
|
||||
|
||||
# Defualt EastGA implimentation structure
|
||||
self.initialization_impl = Initialization_Types().random_initialization
|
||||
self.initialization_impl = Initialization_Methods().random_initialization
|
||||
self.fitness_function_impl = Fitness_Examples().is_it_5
|
||||
self.mutation_impl = Mutation_Types().per_gene_mutation
|
||||
self.parent_selection_impl = Selection_Types().Parent_Selection().Tournament().with_replacement
|
||||
self.survivor_selection_impl = Selection_Types().Survivor_Selection().repeated_crossover
|
||||
self.crossover_impl = Crossover_Types().single_point_crossover
|
||||
self.termination_impl = Termination_Types().generation_based
|
||||
# Selects which chromosomes should be automaticly moved to the next population
|
||||
self.survivor_selection_impl = Selection_Methods().Survivor_Selection().remove_two_worst
|
||||
# Methods for accomplishing parent-selection -> Crossover -> Mutation
|
||||
self.parent_selection_impl = Selection_Methods().Parent_Selection().Tournament().with_replacement
|
||||
self.crossover_impl = Crossover_Methods().single_point_crossover
|
||||
self.mutation_impl = Mutation_Methods().per_gene_mutation
|
||||
# The type of termination to impliment
|
||||
self.termination_impl = Termination_Methods().generation_based
|
||||
|
||||
def evolve_generation(self, number_of_generations = 1, consider_termination = True):
|
||||
"""Evolves the ga the specified number of generations."""
|
||||
while(number_of_generations > 0 and (consider_termination == False or self.termination_impl(self))):
|
||||
# If its the first generation then initialize the population
|
||||
if self.current_generation == 0:
|
||||
self.initialize_population()
|
||||
self.set_all_fitness(self.population.chromosome_list)
|
||||
|
||||
self.parent_selection_impl(self)
|
||||
next_population = self.crossover_impl(self)
|
||||
next_population = self.survivor_selection_impl(self, next_population)
|
||||
next_population.set_all_chromosomes(self.mutation_impl(self, next_population.get_all_chromosomes()))
|
||||
|
||||
self.population = next_population
|
||||
self.set_all_fitness(self.population.chromosome_list)
|
||||
|
||||
number_of_generations -= 1
|
||||
self.current_generation += 1
|
||||
|
||||
def evolve(self):
|
||||
"""Runs the ga until the termination point has been satisfied."""
|
||||
# While the termination point hasnt been reached keep running
|
||||
while(self.active()):
|
||||
self.evolve_generation()
|
||||
|
||||
def active(self):
|
||||
"""Returns if the ga should terminate base on the termination implimented"""
|
||||
# Send termination_impl the whole ga class
|
||||
return self.termination_impl(self)
|
||||
|
||||
def initialize_population(self):
|
||||
"""Initialize the population using the initialization
|
||||
implimentation that is currently set"""
|
||||
self.population = self.initialization_impl(self)
|
||||
|
||||
|
||||
def set_all_fitness(self,chromosome_set):
|
||||
"""Will get and set the fitness of each chromosome in the population.
|
||||
If update_fitness is set then all fitness values are updated.
|
||||
@ -69,7 +106,7 @@ class GA:
|
||||
# If its the first generation then initialize the population
|
||||
if self.current_generation == 0:
|
||||
self.initialize_population()
|
||||
self.set_all_fitness(self.population.chromosomes)
|
||||
self.set_all_fitness(self.population.chromosome_list)
|
||||
|
||||
self.parent_selection_impl(self)
|
||||
next_population = self.crossover_impl(self)
|
||||
@ -77,7 +114,7 @@ class GA:
|
||||
next_population.set_all_chromosomes(self.mutation_impl(self, next_population.get_all_chromosomes()))
|
||||
|
||||
self.population = next_population
|
||||
self.set_all_fitness(self.population.chromosomes)
|
||||
self.set_all_fitness(self.population.chromosome_list)
|
||||
|
||||
number_of_generations -= 1
|
||||
self.current_generation += 1
|
||||
|
||||
@ -1,2 +1,2 @@
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .crossover_types import Crossover_Types
|
||||
from .crossover_methods import Crossover_Methods
|
||||
|
||||
@ -2,7 +2,7 @@ import random
|
||||
from initialization.chromosome_structure.chromosome import Chromosome
|
||||
from initialization.population_structure.population import Population
|
||||
|
||||
class Crossover_Types:
|
||||
class Crossover_Methods:
|
||||
""" Crossover explination goes here.
|
||||
|
||||
Points - Defined as sections between the chromosomes genetic makeup
|
||||
0
src/crossover/test_examples.py
Normal file
0
src/crossover/test_examples.py
Normal file
@ -1,2 +1,2 @@
|
||||
# FROM (. means local) file_name IMPORT class name
|
||||
from .examples import Fitness_Examples
|
||||
from .fitness_examples import Fitness_Examples
|
||||
|
||||
@ -1,13 +1,12 @@
|
||||
class Fitness_Examples:
|
||||
"""Fitness function examples used"""
|
||||
|
||||
def is_it_5(self, chromosome):
|
||||
"""A very simple case test function - If the chromosomes gene value is a 5 add one
|
||||
to the chromosomes overall fitness value."""
|
||||
# Overall fitness value
|
||||
fitness = 0
|
||||
# For each gene in the chromosome
|
||||
for gene in chromosome.genes:
|
||||
for gene in chromosome.gene_list:
|
||||
# Check if its value = 5
|
||||
if(gene.value == 5):
|
||||
# If its value is 5 then add one to
|
||||
12
src/fitness_function/test_examples.py
Normal file
12
src/fitness_function/test_examples.py
Normal file
@ -0,0 +1,12 @@
|
||||
class test_fitness_funciton:
|
||||
def get_fitness(self, chromosome):
|
||||
# For every gene in chromosome
|
||||
for i in range(len(chromosome.genes)):
|
||||
# If the gene has a five then add one to the fitness
|
||||
# Example -> Chromosome = [5],[2],[2],[5],[5] then fitness = 3
|
||||
if (chromosome.genes[i].get_value == 5):
|
||||
# Add to the genes fitness
|
||||
chromosome.genes[i].fitness += 1
|
||||
# Add to the chromosomes fitness
|
||||
chromosome.fitness += 1
|
||||
return chromosome.fitness
|
||||
@ -1,5 +1,5 @@
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .initialization_types import Initialization_Types
|
||||
from .initialization_methods import Initialization_Methods
|
||||
from .population_structure.population import Population
|
||||
from .chromosome_structure.chromosome import Chromosome
|
||||
from .gene_structure.gene import Gene
|
||||
|
||||
@ -2,37 +2,37 @@ class Chromosome:
|
||||
|
||||
def __init__(self, genes = None):
|
||||
if genes is None:
|
||||
self.genes = []
|
||||
self.gene_list = []
|
||||
else:
|
||||
self.genes = genes
|
||||
self.gene_list = genes
|
||||
self.fitness = None
|
||||
self.selected = False
|
||||
|
||||
def add_gene(self, gene, index = -1):
|
||||
if index == -1:
|
||||
index = len(self.genes)
|
||||
self.genes.insert(index, gene)
|
||||
index = len(self.gene_list)
|
||||
self.gene_list.insert(index, gene)
|
||||
|
||||
def remove_gene(self, index):
|
||||
del self.genes[index]
|
||||
del self.gene_list[index]
|
||||
|
||||
def get_genes(self):
|
||||
return self.genes
|
||||
return self.gene_list
|
||||
|
||||
def get_fitness(self):
|
||||
return self.fitness
|
||||
|
||||
def set_gene(self, gene, index):
|
||||
self.genes[index] = gene
|
||||
self.gene_list[index] = gene
|
||||
|
||||
def set_genes(self, genes):
|
||||
self.genes = genes
|
||||
self.gene_list = genes
|
||||
|
||||
def set_fitness(self, fitness):
|
||||
self.fitness = fitness
|
||||
|
||||
def __repr__(self):
|
||||
output_str = ''
|
||||
for gene in self.genes:
|
||||
for gene in self.gene_list:
|
||||
output_str += gene.__repr__()
|
||||
return output_str
|
||||
|
||||
@ -1,22 +0,0 @@
|
||||
# Imported library
|
||||
import random
|
||||
|
||||
def check_values(low,high):
|
||||
#Check to make sure its not less then zero
|
||||
assert low > 0 , "The random gene low can not be less then zero"
|
||||
# Check to make sure the high value is not
|
||||
# lower than or equal to low and not 0.
|
||||
assert high > low, "High value can not be smaller then low value"
|
||||
assert high != 0, "High value can not be zero"
|
||||
|
||||
def random_gene(gene_input, gene_input_type, gene_index):
|
||||
created_gene = None
|
||||
|
||||
if gene_input_type[gene_index] == "range":
|
||||
created_gene = random.randint(gene_input[gene_index][0], gene_input[gene_index][1])
|
||||
elif gene_input_type[gene_index] == "domain":
|
||||
created_gene = random.choice(gene_input[gene_index])
|
||||
elif gene_input_type[gene_index] == "float-range":
|
||||
created_gene = random.uniform(gene_input[gene_index][0], gene_input[gene_index][1])
|
||||
|
||||
return created_gene
|
||||
@ -3,12 +3,12 @@ from .population_structure.population import Population as create_population
|
||||
from .chromosome_structure.chromosome import Chromosome as create_chromosome
|
||||
from .gene_structure.gene import Gene as create_gene
|
||||
|
||||
class Initialization_Types:
|
||||
class Initialization_Methods:
|
||||
"""Initialization examples that are used as defaults and examples"""
|
||||
|
||||
|
||||
def random_initialization(self, ga):
|
||||
"""Takes the initialization inputs and choregraphs them to output the type of population
|
||||
with the given parameters."""
|
||||
"""Takes the initialization inputs and choregraphs them to output the type of population with the given parameters."""
|
||||
|
||||
# Create the population object
|
||||
population = create_population()
|
||||
|
||||
@ -3,9 +3,9 @@ class Population:
|
||||
# fitness = Empty; population = [chromosome, chromosome, etc.]
|
||||
def __init__(self, chromosomes = None):
|
||||
if chromosomes is None:
|
||||
self.chromosomes = []
|
||||
self.chromosome_list = []
|
||||
else:
|
||||
self.chromosomes = chromosomes
|
||||
self.chromosome_list = chromosomes
|
||||
self.fitness = None
|
||||
|
||||
def get_closet_fitness(self,value):
|
||||
@ -14,46 +14,38 @@ class Population:
|
||||
|
||||
def add_chromosome(self, chromosome, index = -1):
|
||||
if index == -1:
|
||||
index = len(self.chromosomes)
|
||||
self.chromosomes.insert(index, chromosome)
|
||||
index = len(self.chromosome_list)
|
||||
self.chromosome_list.insert(index, chromosome)
|
||||
|
||||
def remove_chromosome(self, index):
|
||||
del self.chromosomes[index]
|
||||
del self.chromosome_list[index]
|
||||
|
||||
def get_all_chromosomes(self):
|
||||
"""returns all chromosomes in the population"""
|
||||
return self.chromosomes
|
||||
return self.chromosome_list
|
||||
|
||||
def get_fitness(self):
|
||||
return self.fitness
|
||||
|
||||
def set_all_chromosomes(self, chromosomes):
|
||||
self.chromosomes = chromosomes
|
||||
self.chromosome_list = chromosomes
|
||||
|
||||
def set_chromosome(self, chromosome, index = -1):
|
||||
if index == -1:
|
||||
index = len(self.chromosomes)-1
|
||||
self.chromosomes[index] = chromosome
|
||||
self.chromosome_list[index] = chromosome
|
||||
|
||||
def set_fitness(self, fitness):
|
||||
self.fitness = fitness
|
||||
|
||||
def __repr__(self):
|
||||
for index in range(len(self.chromosomes)):
|
||||
return f'{self.chromosomes[index]}'
|
||||
return f'{self.chromosome_list[index]}'
|
||||
|
||||
def print_all(self):
|
||||
# Ex .Current population
|
||||
# Chromosome 1 - [gene][gene][gene][.etc] / Chromosome fitness - #
|
||||
print("Current population:")
|
||||
for index in range(len(self.chromosomes)):
|
||||
print(f'Chromosome - {index} {self.chromosomes[index]}', end = "")
|
||||
print(f' / Fitness = {self.chromosomes[index].fitness}')
|
||||
|
||||
def generate_first_chromosomes(self, chromosome_count, chromosome_length, gene_lower_bound, gene_upper_bound):
|
||||
#Creating the chromosomes with Genes of random size
|
||||
for x in range(chromosome_count):
|
||||
chromosome = Chromosome(chromosome_length)
|
||||
for y in range(chromosome_length):
|
||||
chromosome.gene_set[y] = Gene(random.randint(gene_lower_bound[y], gene_upper_bound[y]))
|
||||
self.chromosome_set.append(chromosome)
|
||||
for index in range(len(self.chromosome_list)):
|
||||
print(f'Chromosome - {index} {self.chromosome_list[index]}', end = "")
|
||||
print(f' / Fitness = {self.chromosome_list[index].fitness}')
|
||||
@ -1,31 +0,0 @@
|
||||
# Import the data structure
|
||||
from .population_structure.population import population as create_population
|
||||
from .chromosome_structure.chromosome import chromosome as create_chromosome
|
||||
from .gene_structure.gene import gene as create_gene
|
||||
from .gene_function.gene_random import random_gene as random_gene
|
||||
|
||||
def random_initialization(chromosome_length,population_size,gene_function,gene_input,gene_input_type):
|
||||
|
||||
if gene_function == random_gene:
|
||||
# Create the population object
|
||||
population = create_population()
|
||||
# Fill the population with chromosomes
|
||||
for i in range(population_size):
|
||||
chromosome = create_chromosome()
|
||||
#Fill the Chromosome with genes
|
||||
for j in range(chromosome_length):
|
||||
chromosome.add_gene(create_gene(gene_function(gene_input, gene_input_type, j)))
|
||||
population.add_chromosome(chromosome)
|
||||
return population
|
||||
|
||||
else: #For user input gene-function, don't do anything with gene_input parameter
|
||||
# Create the population object
|
||||
population = create_population()
|
||||
# Fill the population with chromosomes
|
||||
for i in range(population_size):
|
||||
chromosome = create_chromosome()
|
||||
#Fill the Chromosome with genes
|
||||
for j in range(chromosome_length):
|
||||
chromosome.add_gene(create_gene(gene_function()))
|
||||
population.add_chromosome(chromosome)
|
||||
return population
|
||||
0
src/initialization/test_examples.py
Normal file
0
src/initialization/test_examples.py
Normal file
@ -1,2 +1,2 @@
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .mutation_types import Mutation_Types
|
||||
from .mutation_methods import Mutation_Methods
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
import random
|
||||
|
||||
class Mutation_Types:
|
||||
class Mutation_Methods:
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
0
src/mutation/test_examples.py
Normal file
0
src/mutation/test_examples.py
Normal file
@ -5,8 +5,7 @@ import random
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
#def random_parent_selection(population):
|
||||
#while ()
|
||||
|
||||
|
||||
ga.gene_impl = [random.randrange,1,100]
|
||||
|
||||
|
||||
@ -1,2 +1,2 @@
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .selection_types import Selection_Types
|
||||
from .selection_methods import Selection_Methods
|
||||
|
||||
@ -4,7 +4,7 @@ from initialization.gene_structure.gene import Gene as create_gene
|
||||
from initialization.population_structure.population import Population
|
||||
from initialization.chromosome_structure.chromosome import Chromosome
|
||||
|
||||
class Selection_Types:
|
||||
class Selection_Methods:
|
||||
"""Selection is the process by which chromosomes are selected for crossover and eventually, influence the next generation of chromosomes."""
|
||||
def __init__(self):
|
||||
pass
|
||||
@ -68,8 +68,8 @@ class Selection_Types:
|
||||
break
|
||||
|
||||
class Survivor_Selection:
|
||||
def repeated_crossover(self, ga, next_population):
|
||||
while len(next_population.chromosomes) < ga.population_size:
|
||||
def repeated_crossover(self, ga, next_population): #Might be cheating? I don't know honestly - RG
|
||||
while len(next_population.get_all_chromosomes()) < ga.population_size:
|
||||
crossover_pool = []
|
||||
for i in range(ga.population_size):
|
||||
if ga.population.get_all_chromosomes()[i].selected:
|
||||
@ -90,10 +90,31 @@ class Selection_Types:
|
||||
|
||||
for i in range(len(chromosome_list)):
|
||||
next_population.add_chromosome(chromosome_list[i])
|
||||
if len(next_population.chromosomes) >= ga.population_size:
|
||||
if len(next_population.get_all_chromosomes()) >= ga.population_size:
|
||||
break
|
||||
return next_population
|
||||
|
||||
def remove_two_worst(self, ga, next_population):
|
||||
|
||||
#Bubble sorting by highest fitness
|
||||
temp_population = ga.population
|
||||
not_sorted_check = 0
|
||||
while (not_sorted_check != len(temp_population.get_all_chromosomes())):
|
||||
not_sorted_check = 0
|
||||
for i in range(len(temp_population.get_all_chromosomes())):
|
||||
if ((i + 1 < len(temp_population.get_all_chromosomes())) and (temp_population.get_all_chromosomes()[i + 1].fitness > temp_population.get_all_chromosomes()[i].fitness)):
|
||||
temp = temp_population.get_all_chromosomes()[i]
|
||||
temp_population.get_all_chromosomes()[i] = ga.population.get_all_chromosomes()[i + 1]
|
||||
temp_population.get_all_chromosomes()[i + 1] = temp
|
||||
else:
|
||||
not_sorted_check += 1
|
||||
|
||||
iterator = 0
|
||||
while len(next_population.get_all_chromosomes()) < ga.population_size:
|
||||
next_population.add_chromosome(temp_population.get_all_chromosomes()[iterator])
|
||||
iterator += 1
|
||||
return next_population
|
||||
|
||||
def roulette_selection(self, ga):
|
||||
"""Roulette selection works based off of how strong the fitness is of the
|
||||
chromosomes in the population. The stronger the fitness the higher the probability
|
||||
0
src/selection/test_examples.py
Normal file
0
src/selection/test_examples.py
Normal file
@ -1,2 +1,2 @@
|
||||
# FROM (. means local) file_name IMPORT class name
|
||||
from .termination_types import Termination_Types
|
||||
from .termination_methods import Termination_Methods
|
||||
|
||||
@ -1,16 +1,16 @@
|
||||
class Termination_Types:
|
||||
class Termination_Methods:
|
||||
"""Example functions that can be used to terminate the the algorithms loop"""
|
||||
|
||||
def fitness_based(self, ga):
|
||||
"""Fitness based approach to terminate when the goal fitness has been reached"""
|
||||
continue_status = True
|
||||
status = True
|
||||
if(ga.current_fitness > ga.fitness_goal):
|
||||
continue_status = False
|
||||
return continue_status
|
||||
status = False
|
||||
return status
|
||||
|
||||
def generation_based(self, ga):
|
||||
"""Generation based approach to terminate when the goal generation has been reached"""
|
||||
continue_status = True
|
||||
if(ga.current_generation > ga.generation_goal-1):
|
||||
continue_status = False
|
||||
return continue_status
|
||||
status = True
|
||||
if(ga.current_generation > ga.generation_goal):
|
||||
status = False
|
||||
return status
|
||||
0
src/termination_point/test_examples.py
Normal file
0
src/termination_point/test_examples.py
Normal file
Reference in New Issue
Block a user