Updated Implementation Framework

Updated to cover changes made by Dan to Master regarding general design changes

Also added remove_two_worst survivor selection method
This commit is contained in:
RyleyGG
2020-10-05 20:46:25 -04:00
parent e05aa7f62b
commit 665062fdf1
24 changed files with 133 additions and 126 deletions

View File

@ -3,25 +3,29 @@ import random
from initialization import Population as create_population
from initialization import Chromosome as create_chromosome
from initialization import Gene as create_gene
# Import example classes
# Structure Methods
from fitness_function import Fitness_Examples
from initialization import Initialization_Types
from termination_point import Termination_Types
from selection import Selection_Types
from crossover import Crossover_Types
from mutation import Mutation_Types
from initialization import Initialization_Methods
from termination_point import Termination_Methods
# Population Methods
from selection import Selection_Methods
# Manipulation Methods
from mutation import Mutation_Methods
from crossover import Crossover_Methods
class GA:
def __init__(self):
"""Initialize the GA."""
# Initilization variables
self.chromosome_length = 10
self.population_size = 150
self.population_size = 100
self.chromosome_impl = None
self.gene_impl = None
self.population = None
# Termination varibles
self.current_generation = 0
self.generation_goal = 50
self.current_fitness = 0
self.generation_goal = 100
self.fitness_goal = 3
@ -32,19 +36,52 @@ class GA:
self.update_fitness = True
# Defualt EastGA implimentation structure
self.initialization_impl = Initialization_Types().random_initialization
self.initialization_impl = Initialization_Methods().random_initialization
self.fitness_function_impl = Fitness_Examples().is_it_5
self.mutation_impl = Mutation_Types().per_gene_mutation
self.parent_selection_impl = Selection_Types().Parent_Selection().Tournament().with_replacement
self.survivor_selection_impl = Selection_Types().Survivor_Selection().repeated_crossover
self.crossover_impl = Crossover_Types().single_point_crossover
self.termination_impl = Termination_Types().generation_based
# Selects which chromosomes should be automaticly moved to the next population
self.survivor_selection_impl = Selection_Methods().Survivor_Selection().remove_two_worst
# Methods for accomplishing parent-selection -> Crossover -> Mutation
self.parent_selection_impl = Selection_Methods().Parent_Selection().Tournament().with_replacement
self.crossover_impl = Crossover_Methods().single_point_crossover
self.mutation_impl = Mutation_Methods().per_gene_mutation
# The type of termination to impliment
self.termination_impl = Termination_Methods().generation_based
def evolve_generation(self, number_of_generations = 1, consider_termination = True):
"""Evolves the ga the specified number of generations."""
while(number_of_generations > 0 and (consider_termination == False or self.termination_impl(self))):
# If its the first generation then initialize the population
if self.current_generation == 0:
self.initialize_population()
self.set_all_fitness(self.population.chromosome_list)
self.parent_selection_impl(self)
next_population = self.crossover_impl(self)
next_population = self.survivor_selection_impl(self, next_population)
next_population.set_all_chromosomes(self.mutation_impl(self, next_population.get_all_chromosomes()))
self.population = next_population
self.set_all_fitness(self.population.chromosome_list)
number_of_generations -= 1
self.current_generation += 1
def evolve(self):
"""Runs the ga until the termination point has been satisfied."""
# While the termination point hasnt been reached keep running
while(self.active()):
self.evolve_generation()
def active(self):
"""Returns if the ga should terminate base on the termination implimented"""
# Send termination_impl the whole ga class
return self.termination_impl(self)
def initialize_population(self):
"""Initialize the population using the initialization
implimentation that is currently set"""
self.population = self.initialization_impl(self)
def set_all_fitness(self,chromosome_set):
"""Will get and set the fitness of each chromosome in the population.
If update_fitness is set then all fitness values are updated.
@ -69,7 +106,7 @@ class GA:
# If its the first generation then initialize the population
if self.current_generation == 0:
self.initialize_population()
self.set_all_fitness(self.population.chromosomes)
self.set_all_fitness(self.population.chromosome_list)
self.parent_selection_impl(self)
next_population = self.crossover_impl(self)
@ -77,7 +114,7 @@ class GA:
next_population.set_all_chromosomes(self.mutation_impl(self, next_population.get_all_chromosomes()))
self.population = next_population
self.set_all_fitness(self.population.chromosomes)
self.set_all_fitness(self.population.chromosome_list)
number_of_generations -= 1
self.current_generation += 1