This commit is contained in:
RyleyGG
2020-09-27 17:47:55 -04:00
4 changed files with 34 additions and 43 deletions

View File

@ -25,37 +25,7 @@ ga.evolve()
Put the out here
```
## Customized:
```python
import random
import EasyGA
# Create the Genetic algorithm
ga = EasyGA.GA()
# Makes a new gene
new_gene = ga.make_gene("HelloWorld")
# Makes a chromosome to store genes in
new_chromosome = ga.make_chromosome()
# Makes a Population to store chromosomes in
new_population = ga.make_population()
ga.initialize()
print(ga.population)
for chromosome in ga.population.chromosomes:
print(chromosome.genes[0].__dict__)
```
### Output:
```python
<initialization.population_structure.population.population object at 0x7f993002fdf0>
{'fitness': None, 'value': 47}
{'fitness': None, 'value': 4}
{'fitness': None, 'value': 68}
{'fitness': None, 'value': 57}
```
# How Testing works

View File

@ -1,4 +1,5 @@
import random
# Import all the data prebuilt modules
from initialization.population_structure.population import population as create_population
from initialization.chromosome_structure.chromosome import chromosome as create_chromosome
@ -7,9 +8,10 @@ from initialization.gene_structure.gene import gene as create_gene
# Import functionality defaults
from initialization.random_initialization import random_initialization
class GA:
def __init__(self):
"""Initialize the GA."""
# Default variables
self.chromosome_impl = None
self.gene_impl = None
@ -19,6 +21,7 @@ class GA:
self.chromosome_length = 3
self.population_size = 5
self.mutation_rate = 0.03
# Defualt EastGA implimentation structure
self.initialization_impl = random_initialization
self.update_fitness = True
@ -28,7 +31,8 @@ class GA:
#self.termination_impl = GenerationTermination(Total_generations)
#self.evaluation_impl = TestEvaluation()
def initialize(self):
def initialize_population(self):
"""Initialize the population"""
self.population = self.initialization_impl(
self.population_size,
self.chromosome_length,
@ -40,27 +44,41 @@ class GA:
pass
def evolve(self):
"""Updates the ga to the next generation.
If update_fitness is set then all fitness values are updated.
Otherwise only fitness values set to None (i.e. uninitialized fitness values) are updated."""
for chromosome in self.population.get_all_chromosomes():
if self.update_fitness or chromosome.get_fitness() is None:
chromosome.set_fitness(self.fitness_impl(chromosome))
"""Runs the ga until the ga is no longer active."""
# run one iteration while the ga is active
while self.active():
self.evolve_generation(1)
def active(self):
"""Returns if the ga should terminate or not"""
return self.current_generation < self.generations
def evolve_generation(self, number_of_generations):
# If you want to evolve through a number of generations
# and be able to pause and output data based on that generation run.
pass
"""Evolves the ga the specified number of generations.
If update_fitness is set then all fitness values are updated.
Otherwise only fitness values set to None (i.e. uninitialized fitness values) are updated."""
# run the specified number of times
for n in range(number_of_generations):
# for each chromosome in the population
for chromosome in self.population.get_all_chromosomes():
# if the fitness should be updated, update it
if self.update_fitness or chromosome.get_fitness() is None:
chromosome.set_fitness(self.fitness_impl(chromosome))
# apply selection, crossover, and mutation
def make_gene(self,value):
"""Let's the user create a gene."""
return create_gene(value)
def make_chromosome(self):
"""Let's the user create a chromosome."""
return create_chromosome()
def make_population(self):
"""Let's the user create a population."""
return create_population()

View File

@ -4,6 +4,8 @@ from .chromosome_structure.chromosome import chromosome as create_chromosome
from .gene_structure.gene import gene as create_gene
def random_initialization(population_size, chromosome_length, chromosome_impl, gene_impl):
"""Takes the initialization inputs and choregraphs them to output the type of population
with the given parameters."""
# Create the population object
population = create_population()
# Fill the population with chromosomes
@ -11,10 +13,11 @@ def random_initialization(population_size, chromosome_length, chromosome_impl, g
chromosome = create_chromosome()
#Fill the Chromosome with genes
for j in range(chromosome_length):
# Using the chromosome_impl to set every index inside of the chromosome
if chromosome_impl != None:
# Each chromosome location is specified with its own function
chromosome.add_gene(create_gene(chromosome_impl(j)))
# Will break if chromosome_length != lists in domain
# Will break if chromosome_length != len(lists) in domain
elif gene_impl != None:
# gene_impl = [range function,lowerbound,upperbound]
function = gene_impl[0]

View File

@ -15,6 +15,6 @@ def user_gene_domain(gene_index):
# If the user wants to use a domain
ga.chromosome_impl = user_gene_domain
ga.initialize()
ga.initialize_population()
ga.population.print_all()