File name changes to match the rest of framework. generation goal was setup twice in EasyGA.
This commit is contained in:
@ -32,14 +32,13 @@ class GA:
|
||||
|
||||
# Termination variables
|
||||
self.current_generation = 0
|
||||
self.generation_goal = 50
|
||||
|
||||
self.current_fitness = 0
|
||||
|
||||
self.generation_goal = 250
|
||||
self.fitness_goal = 9
|
||||
|
||||
# Mutation variables
|
||||
self.mutation_rate = 0.10
|
||||
self.mutation_rate = 0.10
|
||||
|
||||
# Default EasyGA implimentation structure
|
||||
self.initialization_impl = Initialization_Methods.random_initialization
|
||||
@ -52,7 +51,7 @@ class GA:
|
||||
self.mutation_impl = Mutation_Methods.per_gene_mutation
|
||||
# The type of termination to impliment
|
||||
self.termination_impl = Termination_Methods.generation_based
|
||||
|
||||
|
||||
|
||||
def evolve_generation(self, number_of_generations = 1, consider_termination = True):
|
||||
"""Evolves the ga the specified number of generations."""
|
||||
@ -121,7 +120,7 @@ class GA:
|
||||
else:
|
||||
not_sorted_check += 1
|
||||
|
||||
chromosome_set = chromosome_set_temp
|
||||
chromosome_set = chromosome_set_temp
|
||||
|
||||
return chromosome_set
|
||||
|
||||
|
||||
@ -9,13 +9,13 @@ class Crossover_Methods:
|
||||
"""
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
|
||||
def single_point_crossover(ga):
|
||||
"""Single point crossover is when a "point" is selected and the genetic
|
||||
make up of the two parent chromosomes are "Crossed" or better known as swapped"""
|
||||
|
||||
crossover_pool = ga.population.mating_pool
|
||||
|
||||
|
||||
new_population = Population()
|
||||
for i in range(len(crossover_pool)):
|
||||
if i + 1 < len(crossover_pool):
|
||||
@ -23,14 +23,14 @@ class Crossover_Methods:
|
||||
parent_one = crossover_pool[i].get_genes()
|
||||
parent_two = crossover_pool[i+1].get_genes()
|
||||
#halfway_point = int(ga.chromosome_length/2)
|
||||
split_point = random.randint(0,ga.chromosome_length)
|
||||
split_point = random.randint(0,ga.chromosome_length)
|
||||
new_gene_set.extend(parent_one[0:split_point])
|
||||
new_gene_set.extend(parent_two[split_point:])
|
||||
new_chromosome = Chromosome(new_gene_set)
|
||||
new_population.add_chromosome(new_chromosome)
|
||||
|
||||
return new_population
|
||||
|
||||
|
||||
def multi_point_crossover(ga, number_of_points = 2):
|
||||
"""Multi point crossover is when a specific number (More then one) of
|
||||
"points" are created to merge the genetic makup of the chromosomes."""
|
||||
|
||||
@ -1,3 +0,0 @@
|
||||
class Crossover_methods:
|
||||
"""Mutation examples will go here """
|
||||
pass
|
||||
@ -1,16 +0,0 @@
|
||||
class Fitness_methods:
|
||||
"""Fitness function examples used"""
|
||||
|
||||
def is_it_5(chromosome):
|
||||
"""A very simple case test function - If the chromosomes gene value is a 5 add one
|
||||
to the chromosomes overall fitness value."""
|
||||
# Overall fitness value
|
||||
fitness = 0
|
||||
# For each gene in the chromosome
|
||||
for gene in chromosome.gene_list:
|
||||
# Check if its value = 5
|
||||
if(gene.value == 5):
|
||||
# If its value is 5 then add one to
|
||||
# the overal fitness of the chromosome.
|
||||
fitness += 1
|
||||
return fitness
|
||||
@ -1,12 +0,0 @@
|
||||
class test_fitness_funciton:
|
||||
def get_fitness(self, chromosome):
|
||||
# For every gene in chromosome
|
||||
for i in range(len(chromosome.genes)):
|
||||
# If the gene has a five then add one to the fitness
|
||||
# Example -> Chromosome = [5],[2],[2],[5],[5] then fitness = 3
|
||||
if (chromosome.genes[i].get_value == 5):
|
||||
# Add to the genes fitness
|
||||
chromosome.genes[i].fitness += 1
|
||||
# Add to the chromosomes fitness
|
||||
chromosome.fitness += 1
|
||||
return chromosome.fitness
|
||||
@ -1,3 +0,0 @@
|
||||
class Mutation_methods:
|
||||
"""Mutation examples will go here """
|
||||
pass
|
||||
@ -1,2 +1,2 @@
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .parent_selection import Parent_Selection
|
||||
from .parent_selection_methods import Parent_Selection
|
||||
|
||||
@ -13,4 +13,5 @@ ga.gene_impl = [random.randrange,1,100]
|
||||
ga.evolve()
|
||||
|
||||
# Print the current population
|
||||
print(f"Current Generation: {ga.current_generation}")
|
||||
ga.population.print_all()
|
||||
|
||||
@ -1,2 +1,2 @@
|
||||
# FROM (. means local) file_name IMPORT function_name
|
||||
from .survivor_selection import Survivor_Selection
|
||||
from .survivor_selection_methods import Survivor_Selection
|
||||
|
||||
@ -1,16 +0,0 @@
|
||||
class Termination_methods:
|
||||
"""Example functions that can be used to terminate the the algorithms loop"""
|
||||
|
||||
def fitness_based(ga):
|
||||
"""Fitness based approach to terminate when the goal fitness has been reached"""
|
||||
status = True
|
||||
if(ga.current_fitness > ga.fitness_goal):
|
||||
status = False
|
||||
return status
|
||||
|
||||
def generation_based(ga):
|
||||
"""Generation based approach to terminate when the goal generation has been reached"""
|
||||
status = True
|
||||
if(ga.current_generation > ga.generation_goal):
|
||||
status = False
|
||||
return status
|
||||
Reference in New Issue
Block a user