File name changes to match the rest of framework. generation goal was setup twice in EasyGA.

This commit is contained in:
danielwilczak101
2020-10-08 15:53:35 -04:00
parent 3649293133
commit 88927f7415
19 changed files with 11 additions and 61 deletions

View File

@ -32,14 +32,13 @@ class GA:
# Termination variables
self.current_generation = 0
self.generation_goal = 50
self.current_fitness = 0
self.generation_goal = 250
self.fitness_goal = 9
# Mutation variables
self.mutation_rate = 0.10
self.mutation_rate = 0.10
# Default EasyGA implimentation structure
self.initialization_impl = Initialization_Methods.random_initialization
@ -52,7 +51,7 @@ class GA:
self.mutation_impl = Mutation_Methods.per_gene_mutation
# The type of termination to impliment
self.termination_impl = Termination_Methods.generation_based
def evolve_generation(self, number_of_generations = 1, consider_termination = True):
"""Evolves the ga the specified number of generations."""
@ -121,7 +120,7 @@ class GA:
else:
not_sorted_check += 1
chromosome_set = chromosome_set_temp
chromosome_set = chromosome_set_temp
return chromosome_set

View File

@ -9,13 +9,13 @@ class Crossover_Methods:
"""
def __init__(self):
pass
def single_point_crossover(ga):
"""Single point crossover is when a "point" is selected and the genetic
make up of the two parent chromosomes are "Crossed" or better known as swapped"""
crossover_pool = ga.population.mating_pool
new_population = Population()
for i in range(len(crossover_pool)):
if i + 1 < len(crossover_pool):
@ -23,14 +23,14 @@ class Crossover_Methods:
parent_one = crossover_pool[i].get_genes()
parent_two = crossover_pool[i+1].get_genes()
#halfway_point = int(ga.chromosome_length/2)
split_point = random.randint(0,ga.chromosome_length)
split_point = random.randint(0,ga.chromosome_length)
new_gene_set.extend(parent_one[0:split_point])
new_gene_set.extend(parent_two[split_point:])
new_chromosome = Chromosome(new_gene_set)
new_population.add_chromosome(new_chromosome)
return new_population
def multi_point_crossover(ga, number_of_points = 2):
"""Multi point crossover is when a specific number (More then one) of
"points" are created to merge the genetic makup of the chromosomes."""

View File

@ -1,3 +0,0 @@
class Crossover_methods:
"""Mutation examples will go here """
pass

View File

@ -1,16 +0,0 @@
class Fitness_methods:
"""Fitness function examples used"""
def is_it_5(chromosome):
"""A very simple case test function - If the chromosomes gene value is a 5 add one
to the chromosomes overall fitness value."""
# Overall fitness value
fitness = 0
# For each gene in the chromosome
for gene in chromosome.gene_list:
# Check if its value = 5
if(gene.value == 5):
# If its value is 5 then add one to
# the overal fitness of the chromosome.
fitness += 1
return fitness

View File

@ -1,12 +0,0 @@
class test_fitness_funciton:
def get_fitness(self, chromosome):
# For every gene in chromosome
for i in range(len(chromosome.genes)):
# If the gene has a five then add one to the fitness
# Example -> Chromosome = [5],[2],[2],[5],[5] then fitness = 3
if (chromosome.genes[i].get_value == 5):
# Add to the genes fitness
chromosome.genes[i].fitness += 1
# Add to the chromosomes fitness
chromosome.fitness += 1
return chromosome.fitness

View File

@ -1,3 +0,0 @@
class Mutation_methods:
"""Mutation examples will go here """
pass

View File

@ -1,2 +1,2 @@
# FROM (. means local) file_name IMPORT function_name
from .parent_selection import Parent_Selection
from .parent_selection_methods import Parent_Selection

View File

@ -13,4 +13,5 @@ ga.gene_impl = [random.randrange,1,100]
ga.evolve()
# Print the current population
print(f"Current Generation: {ga.current_generation}")
ga.population.print_all()

View File

@ -1,2 +1,2 @@
# FROM (. means local) file_name IMPORT function_name
from .survivor_selection import Survivor_Selection
from .survivor_selection_methods import Survivor_Selection

View File

@ -1,16 +0,0 @@
class Termination_methods:
"""Example functions that can be used to terminate the the algorithms loop"""
def fitness_based(ga):
"""Fitness based approach to terminate when the goal fitness has been reached"""
status = True
if(ga.current_fitness > ga.fitness_goal):
status = False
return status
def generation_based(ga):
"""Generation based approach to terminate when the goal generation has been reached"""
status = True
if(ga.current_generation > ga.generation_goal):
status = False
return status