Implemented basic functionality for using different target fitness types

This commit is contained in:
SimpleArt
2020-10-21 14:11:43 -04:00
parent 9101072f26
commit 8e2698fc0d
5 changed files with 45 additions and 17 deletions

View File

@ -80,4 +80,26 @@ class GA(attributes):
return sorted(chromosome_set, # list to be sorted
key = lambda chromosome: chromosome.get_fitness(), # by fitness
reverse = True) # from highest to lowest fitness
reverse = (self.target_fitness_type == 'max')) # from highest to lowest fitness
def get_chromosome_fitness(self, index):
"""Returns the fitness value of the chromosome
at the specified index after conversion based
on the target fitness type.
"""
return self.convert_fitness(
self.population.get_chromosome(index).get_fitness()
)
def convert_fitness(self, fitness_value):
"""Returns the fitness value if the type of problem
is a maximization problem. Otherwise the fitness is
inverted using max - value + min.
"""
if self.target_fitness_type == 'max': return fitness_value
max_fitness = self.population.get_chromosome(-1).get_fitness()
min_fitness = self.population.get_chromosome(0).get_fitness()
return max_fitness - fitness_value + min_fitness

View File

@ -28,7 +28,7 @@ class attributes:
self.chromosome_impl = None
self.gene_impl = lambda: random.randint(1, 10)
self.population = None
self.target_fitness_type = 'maximum'
self.target_fitness_type = 'max'
self.update_fitness = True
# Selection variables

View File

@ -66,20 +66,20 @@ class Parent_Selection:
return
# Error if not all chromosomes has positive fitness
if (ga.population.get_chromosome(0).get_fitness() == 0 or ga.population.get_chromosome(-1).get_fitness() < 0):
if (ga.get_chromosome_fitness(0) == 0 or ga.get_chromosome_fitness(-1) < 0):
print("Error using roulette selection, all fitnesses must be positive.")
print("Consider using stockastic roulette selection or tournament selection.")
return
# The sum of all the fitnessess in a population
fitness_sum = sum(chromosome.get_fitness() for chromosome in ga.population.get_all_chromosomes())
fitness_sum = sum(ga.get_chromosome_fitness(index) for index in range(ga.population.size()))
# A list of ranges that represent the probability of a chromosome getting chosen
probability = [ga.selection_probability]
# The chance of being selected increases incrementally
for chromosome in ga.population.chromosome_list:
probability.append(probability[-1]+chromosome.fitness/fitness_sum)
for index in range(ga.population.size()):
probability.append(probability[-1]+ga.get_chromosome_fitness(index)/fitness_sum)
probability = probability[1:]
@ -111,7 +111,7 @@ class Parent_Selection:
print("Selection probability must be between 0 and 1 to select parents.")
return
max_fitness = ga.population.get_chromosome(0).get_fitness()
max_fitness = ga.get_chromosome_fitness(0)
# Error if the highest fitness is not positive
if max_fitness <= 0:
@ -126,5 +126,5 @@ class Parent_Selection:
index = random.randint(0, ga.population.size()-1)
# Probability of becoming a parent is fitness/max_fitness
if random.uniform(ga.selection_probability, 1) < ga.population.get_chromosome(index).get_fitness()/max_fitness:
if random.uniform(ga.selection_probability, 1) < ga.get_chromosome_fitness(index)/max_fitness:
ga.population.set_parent(index)

View File

@ -3,10 +3,22 @@ import EasyGA
# Create the Genetic algorithm
ga = EasyGA.GA()
ga.target_fitness_type = 'min'
ga.chromosome_length = 10
ga.population_size = 25
ga.generation_goal = 50
ga.gene_impl = lambda: random.randint(0, 10)
ga.chromosome_length = 100
def fitness_function(chromosome):
return sum(
gene.get_value()
for gene in chromosome.get_gene_list())
ga.fitness_function_impl = fitness_function
ga.evolve()
ga.set_all_fitness()
ga.population.sort_by_best_fitness(ga)
print(f"Current Generation: {ga.current_generation}")
ga.population.print_all()

View File

@ -27,16 +27,10 @@ class Survivor_Selection:
def fill_in_parents_then_random(ga):
"""Fills in the next population with all parents followed by random chromosomes from the last population"""
ga.population.append_children([ # add in chromosomes
random.choice( # randomly
ga.population.get_chromosome_list() # from the population
) # until the next population is full
for n in range(ga.population.size()-ga.population.total_children())])
ga.population.append_children( # add in chromosomes
ga.population.get_mating_pool() # from the mating pool
) #
) #
ga.population.append_children([ # add in chromosomes
random.choice( # randomly
ga.population.get_chromosome_list() # from the population