Added decorator file and fixed old crossover usage in adapt method
This commit is contained in:
@ -1,26 +1,12 @@
|
||||
def function_info(decorator):
|
||||
"""Recovers the name and doc-string for decorators throughout EasyGA for documentation purposes."""
|
||||
|
||||
def new_decorator(method):
|
||||
|
||||
# Apply old decorator
|
||||
new_method = decorator(method)
|
||||
|
||||
# Recover name and doc-string
|
||||
new_method.__name__ = method.__name__
|
||||
new_method.__doc__ = method.__doc__
|
||||
|
||||
# Return new method with proper name and doc-string
|
||||
return new_method
|
||||
|
||||
return new_decorator
|
||||
|
||||
# Import math for square root (ga.dist()) and ceil (crossover methods)
|
||||
import math
|
||||
|
||||
# Import random for many methods
|
||||
import random
|
||||
|
||||
# Import all decorators
|
||||
import decorators
|
||||
|
||||
# Import all the data structure prebuilt modules
|
||||
from structure import Population as make_population
|
||||
from structure import Chromosome as make_chromosome
|
||||
@ -207,38 +193,35 @@ class GA(Attributes):
|
||||
if (tol_j := tol(j)) > 2*tol_i:
|
||||
break
|
||||
|
||||
|
||||
|
||||
# Strongly cross the best chromosome with the worst chromosomes
|
||||
for n in range(i, len(self.population)):
|
||||
for n in range(len(self.population)-1, i-1, -1):
|
||||
|
||||
# Strongly cross with the best chromosome
|
||||
# May reject negative weight or division by 0
|
||||
try:
|
||||
self.population[n] = self.crossover_individual_impl(
|
||||
self.crossover_individual_impl(
|
||||
self.population[n],
|
||||
best_chromosome,
|
||||
weight = min(0.25, 2 * tol_j / (tol(n) - tol_j))
|
||||
)
|
||||
|
||||
# If negative weights can't be used,
|
||||
# If negative weights can't be used or division by 0,
|
||||
# Cross with j-th chromosome instead
|
||||
except:
|
||||
self.population[n] = self.crossover_individual_impl(
|
||||
except (ValueError, ZeroDivisionError):
|
||||
self.crossover_individual_impl(
|
||||
self.population[n],
|
||||
self.population[j],
|
||||
weight = 0.75
|
||||
)
|
||||
|
||||
# Update fitnesses
|
||||
self.population[n].fitness = self.fitness_function_impl(self.population[n])
|
||||
if len(self.population.next_population) >= len(self.population) - i:
|
||||
break
|
||||
|
||||
# Update best chromosome
|
||||
if any((all((self.target_fitness_type == 'max',
|
||||
self.population[n].fitness > best_chromosome.fitness)),
|
||||
all((self.target_fitness_type == 'min',
|
||||
self.population[n].fitness < best_chromosome.fitness))
|
||||
)):
|
||||
tol_j = tol(j)
|
||||
best_chromosome = self.population[n]
|
||||
# Replace worst chromosomes with new chromosomes
|
||||
self.population[-len(self.population.next_population):] = self.population.next_population
|
||||
self.population.next_population = []
|
||||
|
||||
|
||||
def initialize_population(self):
|
||||
|
||||
@ -122,7 +122,16 @@ class Population:
|
||||
population[index] = chromosome
|
||||
to set the indexed chromosome.
|
||||
"""
|
||||
self.chromosome_list[index] = to_chromosome(chromosome)
|
||||
|
||||
# Just one chromosome
|
||||
if isinstance(index, int):
|
||||
chromosome = to_chromosome(chromosome)
|
||||
|
||||
# Multiple chromosomes
|
||||
else:
|
||||
chromosome = [to_chromosome(elem) for elem in chromosome]
|
||||
|
||||
self.chromosome_list[index] = chromosome
|
||||
|
||||
|
||||
def __delitem__(self, index):
|
||||
|
||||
Reference in New Issue
Block a user