Updated tournament selection
On small populations, there is now a lower bound on the tournament size.
This commit is contained in:
@ -29,12 +29,13 @@ class GA:
|
||||
# Selection variables
|
||||
self.parent_ratio = 0.1
|
||||
self.selection_probability = 0.95
|
||||
self.tournament_size_ratio = 0.1
|
||||
|
||||
# Termination variables
|
||||
self.current_generation = 0
|
||||
self.current_fitness = 0
|
||||
|
||||
self.generation_goal = 250
|
||||
self.generation_goal = 15
|
||||
self.fitness_goal = 9
|
||||
|
||||
# Mutation variables
|
||||
|
||||
@ -7,16 +7,14 @@ from initialization.chromosome_structure.chromosome import Chromosome
|
||||
class Parent_Selection:
|
||||
class Tournament:
|
||||
def with_replacement(ga):
|
||||
tournament_size = int(len(ga.population.get_all_chromosomes())*ga.parent_ratio/10)
|
||||
if tournament_size < 3:
|
||||
tournament_size = int(len(ga.population.get_all_chromosomes())*ga.parent_ratio/3)
|
||||
|
||||
tournament_size = int(len(ga.population.get_all_chromosomes())*ga.parent_ratio*ga.tournament_size_ratio)
|
||||
if tournament_size < 5:
|
||||
tournament_size = 5
|
||||
# Probability used for determining if a chromosome should enter the mating pool.
|
||||
selection_probability = ga.selection_probability
|
||||
|
||||
# Repeat tournaments until the mating pool is large enough.
|
||||
while (len(ga.population.mating_pool) < len(ga.population.get_all_chromosomes())*ga.parent_ratio):
|
||||
|
||||
# Generate a random tournament group and sort by fitness.
|
||||
tournament_group = ga.sort_by_best_fitness([random.choice(ga.population.get_all_chromosomes()) for n in range(tournament_size)])
|
||||
|
||||
@ -27,7 +25,7 @@ class Parent_Selection:
|
||||
# second ranked fitness has probability: selection_probability * (1-selection_probability)
|
||||
# third ranked fitness has probability: selection_probability * (1-selection_probability)^2
|
||||
# etc.
|
||||
if random.uniform(0, 1) < selection_probability * pow(1-selection_probability, index+1):
|
||||
if random.uniform(0, 1) < selection_probability * pow(1-selection_probability, index):
|
||||
ga.population.mating_pool.append(tournament_group[index])
|
||||
|
||||
class Roulette:
|
||||
|
||||
@ -1,17 +1,14 @@
|
||||
import EasyGA
|
||||
import random
|
||||
|
||||
|
||||
# Create the Genetic algorithm
|
||||
ga = EasyGA.GA()
|
||||
|
||||
ga.population_size = 15
|
||||
ga.chromosome_length = 10
|
||||
ga.generation_goal = 100
|
||||
ga.gene_impl = [random.randint,1,10]
|
||||
|
||||
|
||||
ga.gene_impl = [random.randrange,1,100]
|
||||
|
||||
# Run Everything
|
||||
ga.evolve()
|
||||
|
||||
# Print the current population
|
||||
print(f"Current Generation: {ga.current_generation}")
|
||||
ga.population.print_all()
|
||||
Reference in New Issue
Block a user