Simplified adapt_population
This commit is contained in:
@ -181,54 +181,39 @@ class GA(Attributes):
|
||||
if self.adapt_population_flag == False:
|
||||
return
|
||||
|
||||
# Amount of the population desired to converge (default 50%)
|
||||
amount_converged = round(self.percent_converged*len(self.population))
|
||||
self.parent_selection_impl()
|
||||
|
||||
# Difference between best and i-th chromosomes
|
||||
best_chromosome = self.population[0]
|
||||
tol = lambda i: self.dist(best_chromosome, self.population[i])
|
||||
# Strongly cross the best chromosome with all other chromosomes
|
||||
for n, parent in enumerate(self.population.mating_pool):
|
||||
|
||||
# First non-zero tolerance after amount_converged/4
|
||||
for i in range(amount_converged//4, len(self.population)):
|
||||
tol_i = tol(i)
|
||||
if tol_i > 0:
|
||||
if self.population[n] != self.population[0]:
|
||||
|
||||
# Strongly cross with the best chromosome
|
||||
# May reject negative weight or division by 0
|
||||
try:
|
||||
self.crossover_individual_impl(
|
||||
self.population[n],
|
||||
parent,
|
||||
weight = -3/4,
|
||||
)
|
||||
|
||||
# If negative weights can't be used or division by 0, use positive weight
|
||||
except ValueError:
|
||||
self.crossover_individual_impl(
|
||||
self.population[n],
|
||||
parent,
|
||||
weight = +1/4,
|
||||
)
|
||||
|
||||
# Stop if we've filled up an entire population
|
||||
if len(self.population.next_population) >= len(self.population):
|
||||
break
|
||||
|
||||
# First significantly different tolerance
|
||||
for j in range(i, len(self.population)):
|
||||
tol_j = tol(j)
|
||||
if tol_j > 2*tol_i:
|
||||
break
|
||||
|
||||
|
||||
|
||||
# Strongly cross the best chromosome with the worst chromosomes
|
||||
for n in range(len(self.population)-1, i-1, -1):
|
||||
|
||||
# Strongly cross with the best chromosome
|
||||
# May reject negative weight or division by 0
|
||||
try:
|
||||
self.crossover_individual_impl(
|
||||
self.population[n],
|
||||
best_chromosome,
|
||||
weight = min(0.25, 2 * tol_j / (tol(n) - tol_j))
|
||||
)
|
||||
|
||||
# If negative weights can't be used or division by 0,
|
||||
# Cross with j-th chromosome instead
|
||||
except (ValueError, ZeroDivisionError):
|
||||
self.crossover_individual_impl(
|
||||
self.population[n],
|
||||
self.population[j],
|
||||
weight = 0.75
|
||||
)
|
||||
|
||||
if len(self.population.next_population) >= len(self.population) - i:
|
||||
break
|
||||
|
||||
# Replace worst chromosomes with new chromosomes
|
||||
self.population[-len(self.population.next_population):] = self.population.next_population
|
||||
# Replace worst chromosomes with new chromosomes, except for the previous best chromosome
|
||||
min_len = min(len(self.population)-1, len(self.population.next_population))
|
||||
self.population[-min_len:] = self.population.next_population[:min_len]
|
||||
self.population.next_population = []
|
||||
self.population.mating_pool = []
|
||||
|
||||
|
||||
def initialize_population(self):
|
||||
|
||||
Reference in New Issue
Block a user