Commit Graph

2 Commits

Author SHA1 Message Date
665062fdf1 Updated Implementation Framework
Updated to cover changes made by Dan to Master regarding general design changes

Also added remove_two_worst survivor selection method
2020-10-05 20:46:25 -04:00
7e587d48d0 Test Implementation for selection/crossover/mutation
The current test implementation includes random mutation, single point crossover, and tournament selection. The implementation, in short, is a nested approach. The selection method is the only thing actually called by the GA. Both crossover and mutation occur within the selection method. As long as these three systems all follow a standard input/output system, any implementation we build, as well as any user implementations, will work perfectly. The selection function must take GA as a parameter and output a new population. Crossover takes in GA and outputs a population. Mutation takes a chromosome set and outputs a new chromosome set.

Many of the changes in this commit are regarding this test implementation. I have also changed many of the file names from "x_examples" to "x_types" and updated the class names to follow capitalziation standards. I did this because I feel personally like the built-in mutation, crossover, and selection implementations are less "examples" and more just already built implementations to make the code required from the user smaller.
2020-10-04 08:00:33 -04:00