Renamed decorators for consistency
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
import random
|
||||
|
||||
def append_to_next_population(population_method):
|
||||
def _append_to_next_population(population_method):
|
||||
"""Appends the new chromosomes to the next population.
|
||||
Also modifies the input to include the mating pool.
|
||||
"""
|
||||
@ -11,7 +11,7 @@ def append_to_next_population(population_method):
|
||||
)
|
||||
|
||||
|
||||
def check_weight(individual_method):
|
||||
def _check_weight(individual_method):
|
||||
"""Checks if the weight is between 0 and 1 before running.
|
||||
Exception may occur when using ga.adapt, which will catch
|
||||
the error and try again with valid weight.
|
||||
@ -27,7 +27,7 @@ def check_weight(individual_method):
|
||||
return new_method
|
||||
|
||||
|
||||
def genes_to_chromosome(individual_method):
|
||||
def _genes_to_chromosome(individual_method):
|
||||
"""Converts a collection of genes into a chromosome.
|
||||
Note: Will recreate the gene list if given gene list.
|
||||
Built-in methods do not construct gene lists
|
||||
@ -40,7 +40,7 @@ def genes_to_chromosome(individual_method):
|
||||
)
|
||||
|
||||
|
||||
def values_to_genes(individual_method):
|
||||
def _values_to_genes(individual_method):
|
||||
"""Converts a collection of values into genes.
|
||||
Returns a generator of genes to avoid storing a new list.
|
||||
"""
|
||||
@ -55,18 +55,18 @@ def values_to_genes(individual_method):
|
||||
|
||||
class Crossover_Methods:
|
||||
|
||||
# Private method decorators, see above.
|
||||
_append_to_next_population = append_to_next_population
|
||||
_check_weight = check_weight
|
||||
_genes_to_chromosome = genes_to_chromosome
|
||||
_values_to_genes = values_to_genes
|
||||
# Allowing access to decorators when importing class
|
||||
_append_to_next_population = _append_to_next_population
|
||||
_check_weight = _check_weight
|
||||
_genes_to_chromosome = _genes_to_chromosome
|
||||
_values_to_genes = _values_to_genes
|
||||
|
||||
|
||||
class Population:
|
||||
"""Methods for selecting chromosomes to crossover."""
|
||||
|
||||
|
||||
@append_to_next_population
|
||||
@_append_to_next_population
|
||||
def sequential_selection(ga, mating_pool):
|
||||
"""Select sequential pairs from the mating pool.
|
||||
Every parent is paired with the previous parent.
|
||||
@ -82,7 +82,7 @@ class Crossover_Methods:
|
||||
)
|
||||
|
||||
|
||||
@append_to_next_population
|
||||
@_append_to_next_population
|
||||
def random_selection(ga, mating_pool):
|
||||
"""Select random pairs from the mating pool.
|
||||
Every parent is paired with a random parent.
|
||||
@ -101,8 +101,8 @@ class Crossover_Methods:
|
||||
"""Methods for crossing parents."""
|
||||
|
||||
|
||||
@check_weight
|
||||
@genes_to_chromosome
|
||||
@_check_weight
|
||||
@_genes_to_chromosome
|
||||
def single_point(ga, parent_1, parent_2, weight = 0.5):
|
||||
"""Cross two parents by swapping genes at one random point."""
|
||||
|
||||
@ -124,15 +124,15 @@ class Crossover_Methods:
|
||||
return parent_2[:-swap_index] + parent_1[-swap_index:]
|
||||
|
||||
|
||||
@check_weight
|
||||
@genes_to_chromosome
|
||||
@_check_weight
|
||||
@_genes_to_chromosome
|
||||
def multi_point(ga, parent_1, parent_2, weight = 0.5):
|
||||
"""Cross two parents by swapping genes at multiple points."""
|
||||
pass
|
||||
|
||||
|
||||
@check_weight
|
||||
@genes_to_chromosome
|
||||
@_check_weight
|
||||
@_genes_to_chromosome
|
||||
def uniform(ga, parent_1, parent_2, weight = 0.5):
|
||||
"""Cross two parents by swapping all genes randomly."""
|
||||
|
||||
@ -143,8 +143,8 @@ class Crossover_Methods:
|
||||
class Arithmetic:
|
||||
"""Crossover methods for numerical genes."""
|
||||
|
||||
@genes_to_chromosome
|
||||
@values_to_genes
|
||||
@_genes_to_chromosome
|
||||
@_values_to_genes
|
||||
def average(ga, parent_1, parent_2, weight = 0.5):
|
||||
"""Cross two parents by taking the average of the genes."""
|
||||
|
||||
@ -161,8 +161,8 @@ class Crossover_Methods:
|
||||
yield value
|
||||
|
||||
|
||||
@genes_to_chromosome
|
||||
@values_to_genes
|
||||
@_genes_to_chromosome
|
||||
@_values_to_genes
|
||||
def extrapolate(ga, parent_1, parent_2, weight = 0.5):
|
||||
|
||||
"""Cross two parents by extrapolating towards the first parent.
|
||||
@ -182,9 +182,9 @@ class Crossover_Methods:
|
||||
yield value
|
||||
|
||||
|
||||
@check_weight
|
||||
@genes_to_chromosome
|
||||
@values_to_genes
|
||||
@_check_weight
|
||||
@_genes_to_chromosome
|
||||
@_values_to_genes
|
||||
def random(ga, parent_1, parent_2, weight = 0.5):
|
||||
"""Cross two parents by taking a random integer or float value between each of the genes."""
|
||||
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import random
|
||||
from math import ceil
|
||||
|
||||
def check_chromosome_mutation_rate(population_method):
|
||||
def _check_chromosome_mutation_rate(population_method):
|
||||
"""Checks if the chromosome mutation rate is a float between 0 and 1 before running."""
|
||||
|
||||
def new_method(ga):
|
||||
@ -18,7 +18,7 @@ def check_chromosome_mutation_rate(population_method):
|
||||
return new_method
|
||||
|
||||
|
||||
def check_gene_mutation_rate(individual_method):
|
||||
def _check_gene_mutation_rate(individual_method):
|
||||
"""Checks if the gene mutation rate is a float between 0 and 1 before running."""
|
||||
|
||||
def new_method(ga, index):
|
||||
@ -35,7 +35,7 @@ def check_gene_mutation_rate(individual_method):
|
||||
return new_method
|
||||
|
||||
|
||||
def reset_fitness(individual_method):
|
||||
def _reset_fitness(individual_method):
|
||||
"""Resets the fitness value of the chromosome."""
|
||||
|
||||
def new_method(ga, chromosome):
|
||||
@ -45,7 +45,7 @@ def reset_fitness(individual_method):
|
||||
return new_method
|
||||
|
||||
|
||||
def loop_random_selections(population_method):
|
||||
def _loop_random_selections(population_method):
|
||||
"""Runs the population method until enough chromosomes are mutated.
|
||||
Provides the indexes of selected chromosomes to mutate using
|
||||
random.sample to get all indexes fast.
|
||||
@ -63,7 +63,7 @@ def loop_random_selections(population_method):
|
||||
return new_method
|
||||
|
||||
|
||||
def loop_random_mutations(individual_method):
|
||||
def _loop_random_mutations(individual_method):
|
||||
"""Runs the individual method until enough
|
||||
genes are mutated on the indexed chromosome.
|
||||
"""
|
||||
@ -83,27 +83,26 @@ def loop_random_mutations(individual_method):
|
||||
|
||||
class Mutation_Methods:
|
||||
|
||||
# Private method decorators, see above.
|
||||
_check_chromosome_mutation_rate = check_chromosome_mutation_rate
|
||||
_check_gene_mutation_rate = check_gene_mutation_rate
|
||||
_reset_fitness = reset_fitness
|
||||
_loop_random_selections = loop_random_selections
|
||||
_loop_random_mutations = loop_random_mutations
|
||||
_check_chromosome_mutation_rate = _check_chromosome_mutation_rate
|
||||
_check_gene_mutation_rate = _check_gene_mutation_rate
|
||||
_reset_fitness = _reset_fitness
|
||||
_loop_random_selections = _loop_random_selections
|
||||
_loop_random_mutations = _loop_random_mutations
|
||||
|
||||
|
||||
class Population:
|
||||
"""Methods for selecting chromosomes to mutate"""
|
||||
|
||||
@check_chromosome_mutation_rate
|
||||
@loop_random_selections
|
||||
@_check_chromosome_mutation_rate
|
||||
@_loop_random_selections
|
||||
def random_selection(ga, index):
|
||||
"""Selects random chromosomes."""
|
||||
|
||||
ga.mutation_individual_impl(ga, ga.population[index])
|
||||
|
||||
|
||||
@check_chromosome_mutation_rate
|
||||
@loop_random_selections
|
||||
@_check_chromosome_mutation_rate
|
||||
@_loop_random_selections
|
||||
def random_avoid_best(ga, index):
|
||||
"""Selects random chromosomes while avoiding the best chromosomes. (Elitism)"""
|
||||
|
||||
@ -114,9 +113,9 @@ class Mutation_Methods:
|
||||
class Individual:
|
||||
"""Methods for mutating a single chromosome."""
|
||||
|
||||
@check_gene_mutation_rate
|
||||
@reset_fitness
|
||||
@loop_random_mutations
|
||||
@_check_gene_mutation_rate
|
||||
@_reset_fitness
|
||||
@_loop_random_mutations
|
||||
def individual_genes(ga, chromosome, index):
|
||||
"""Mutates a random gene in the chromosome."""
|
||||
|
||||
@ -137,9 +136,9 @@ class Mutation_Methods:
|
||||
"""Methods for mutating a chromosome
|
||||
by numerically modifying the genes."""
|
||||
|
||||
@check_gene_mutation_rate
|
||||
@reset_fitness
|
||||
@loop_random_mutations
|
||||
@_check_gene_mutation_rate
|
||||
@_reset_fitness
|
||||
@_loop_random_mutations
|
||||
def reflect_genes(ga, chromosome, index):
|
||||
"""Reflects genes against the best chromosome."""
|
||||
|
||||
@ -152,9 +151,9 @@ class Mutation_Methods:
|
||||
"""Methods for mutating a chromosome
|
||||
by changing the order of the genes."""
|
||||
|
||||
@check_gene_mutation_rate
|
||||
@reset_fitness
|
||||
@loop_random_mutations
|
||||
@_check_gene_mutation_rate
|
||||
@_reset_fitness
|
||||
@_loop_random_mutations
|
||||
def swap_genes(ga, chromosome, index):
|
||||
"""Swaps two random genes in the chromosome."""
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
import random
|
||||
|
||||
def check_selection_probability(selection_method):
|
||||
def _check_selection_probability(selection_method):
|
||||
"""Raises an exception if the selection_probability
|
||||
is not between 0 and 1. Otherwise runs the selection
|
||||
method.
|
||||
@ -15,7 +15,7 @@ def check_selection_probability(selection_method):
|
||||
return new_method
|
||||
|
||||
|
||||
def check_positive_fitness(selection_method):
|
||||
def _check_positive_fitness(selection_method):
|
||||
"""Raises an exception if the population contains a
|
||||
chromosome with negative fitness. Otherwise runs
|
||||
the selection method.
|
||||
@ -30,7 +30,7 @@ def check_positive_fitness(selection_method):
|
||||
return new_method
|
||||
|
||||
|
||||
def ensure_sorted(selection_method):
|
||||
def _ensure_sorted(selection_method):
|
||||
"""Sorts the population by fitness
|
||||
and then runs the selection method.
|
||||
"""
|
||||
@ -42,7 +42,7 @@ def ensure_sorted(selection_method):
|
||||
return new_method
|
||||
|
||||
|
||||
def compute_parent_amount(selection_method):
|
||||
def _compute_parent_amount(selection_method):
|
||||
"""Computes the amount of parents
|
||||
needed to be selected, and passes it
|
||||
as another argument for the method.
|
||||
@ -57,11 +57,11 @@ def compute_parent_amount(selection_method):
|
||||
|
||||
class Parent_Selection:
|
||||
|
||||
# Private method decorators, see above.
|
||||
_check_selection_probability = check_selection_probability
|
||||
_check_positive_fitness = check_positive_fitness
|
||||
_ensure_sorted = ensure_sorted
|
||||
_compute_parent_amount = compute_parent_amount
|
||||
# Allowing access to decorators when importing class
|
||||
_check_selection_probability = _check_selection_probability
|
||||
_check_positive_fitness = _check_positive_fitness
|
||||
_ensure_sorted = _ensure_sorted
|
||||
_compute_parent_amount = _compute_parent_amount
|
||||
|
||||
|
||||
class Rank:
|
||||
@ -69,9 +69,9 @@ class Parent_Selection:
|
||||
i.e. the n-th best chromosome has a fixed probability of being selected,
|
||||
regardless of their chances"""
|
||||
|
||||
@check_selection_probability
|
||||
@ensure_sorted
|
||||
@compute_parent_amount
|
||||
@_check_selection_probability
|
||||
@_ensure_sorted
|
||||
@_compute_parent_amount
|
||||
def tournament(ga, parent_amount):
|
||||
"""
|
||||
Will make tournaments of size tournament_size and choose the winner (best fitness)
|
||||
@ -108,9 +108,9 @@ class Parent_Selection:
|
||||
return
|
||||
|
||||
|
||||
@check_selection_probability
|
||||
@ensure_sorted
|
||||
@compute_parent_amount
|
||||
@_check_selection_probability
|
||||
@_ensure_sorted
|
||||
@_compute_parent_amount
|
||||
def stochastic(ga, parent_amount):
|
||||
"""
|
||||
Selects parents using the same probability approach as tournament selection,
|
||||
@ -133,10 +133,10 @@ class Parent_Selection:
|
||||
|
||||
class Fitness:
|
||||
|
||||
@check_selection_probability
|
||||
@ensure_sorted
|
||||
@check_positive_fitness
|
||||
@compute_parent_amount
|
||||
@_check_selection_probability
|
||||
@_ensure_sorted
|
||||
@_check_positive_fitness
|
||||
@_compute_parent_amount
|
||||
def roulette(ga, parent_amount):
|
||||
"""Roulette selection works based off of how strong the fitness is of the
|
||||
chromosomes in the population. The stronger the fitness the higher the probability
|
||||
@ -175,9 +175,9 @@ class Parent_Selection:
|
||||
break
|
||||
|
||||
|
||||
@check_selection_probability
|
||||
@ensure_sorted
|
||||
@compute_parent_amount
|
||||
@_check_selection_probability
|
||||
@_ensure_sorted
|
||||
@_compute_parent_amount
|
||||
def stochastic(ga, parent_amount):
|
||||
"""
|
||||
Selects parents using the same probability approach as roulette selection,
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
import random
|
||||
|
||||
def append_to_next_population(survivor_method):
|
||||
def _append_to_next_population(survivor_method):
|
||||
"""Appends the selected chromosomes to the next population."""
|
||||
|
||||
return lambda ga:\
|
||||
@ -10,11 +10,11 @@ def append_to_next_population(survivor_method):
|
||||
class Survivor_Selection:
|
||||
"""Survivor selection determines which individuals should be brought to the next generation"""
|
||||
|
||||
# Private method decorator, see above.
|
||||
_append_to_next_population = append_to_next_population
|
||||
# Allowing access to decorators when importing class
|
||||
_append_to_next_population = _append_to_next_population
|
||||
|
||||
|
||||
@append_to_next_population
|
||||
@_append_to_next_population
|
||||
def fill_in_best(ga):
|
||||
"""Fills in the next population with the best chromosomes from the last population"""
|
||||
|
||||
@ -22,7 +22,7 @@ class Survivor_Selection:
|
||||
return ga.population[:needed_amount]
|
||||
|
||||
|
||||
@append_to_next_population
|
||||
@_append_to_next_population
|
||||
def fill_in_random(ga):
|
||||
"""Fills in the next population with random chromosomes from the last population"""
|
||||
|
||||
@ -30,7 +30,7 @@ class Survivor_Selection:
|
||||
return random.sample(ga.population, needed_amount)
|
||||
|
||||
|
||||
@append_to_next_population
|
||||
@_append_to_next_population
|
||||
def fill_in_parents_then_random(ga):
|
||||
"""Fills in the next population with all parents followed by random chromosomes from the last population"""
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
def add_by_fitness_goal(termination_impl):
|
||||
def _add_by_fitness_goal(termination_impl):
|
||||
"""Adds termination by fitness goal to the method."""
|
||||
|
||||
def new_method(ga):
|
||||
@ -20,7 +20,7 @@ def add_by_fitness_goal(termination_impl):
|
||||
return new_method
|
||||
|
||||
|
||||
def add_by_generation_goal(termination_impl):
|
||||
def _add_by_generation_goal(termination_impl):
|
||||
"""Adds termination by generation goal to the method."""
|
||||
|
||||
def new_method(ga):
|
||||
@ -35,7 +35,7 @@ def add_by_generation_goal(termination_impl):
|
||||
return new_method
|
||||
|
||||
|
||||
def add_by_tolerance_goal(termination_impl):
|
||||
def _add_by_tolerance_goal(termination_impl):
|
||||
"""Adds termination by tolerance goal to the method."""
|
||||
|
||||
def new_method(ga):
|
||||
@ -59,15 +59,15 @@ def add_by_tolerance_goal(termination_impl):
|
||||
class Termination_Methods:
|
||||
"""Example functions that can be used to terminate the the algorithms loop"""
|
||||
|
||||
# Private method decorators, see above.
|
||||
_add_by_fitness_goal = add_by_fitness_goal
|
||||
_add_by_generation_goal = add_by_generation_goal
|
||||
_add_by_tolerance_goal = add_by_tolerance_goal
|
||||
# Allowing access to decorators when importing class
|
||||
_add_by_fitness_goal = _add_by_fitness_goal
|
||||
_add_by_generation_goal = _add_by_generation_goal
|
||||
_add_by_tolerance_goal = _add_by_tolerance_goal
|
||||
|
||||
|
||||
@add_by_fitness_goal
|
||||
@add_by_generation_goal
|
||||
@add_by_tolerance_goal
|
||||
@_add_by_fitness_goal
|
||||
@_add_by_generation_goal
|
||||
@_add_by_tolerance_goal
|
||||
def fitness_generation_tolerance(ga):
|
||||
"""Terminate GA when any of the
|
||||
- fitness,
|
||||
|
||||
Reference in New Issue
Block a user